Mémoires Bibliographiques MBCP

distribués dans le cadre du module

Immunologie Fondamentale 2003-2004

Recommandations aux étudiants pour la préparation des mémoires

Recommandations aux tuteurs pour la préparation des mémoires

Planning des soutenances (21 & 22 juin 2004)

à la page d'accueil

au programme détaillé

Mémoire

Sujet

Mémoire n°1

Fonction des molécules CD3 et pré-TCRa lors des premières étapes de sélection des lymphocytes T dans le thymus

Mémoire n°2

Les lymphocytes NKT

Mémoire n°3

Signalisation par les molécules de classe II du CMH dans les cellules dendritiques

Mémoire n°4

Evolution du système immunitaire/ famille de gènes

Mémoire n°5

Stimulations lymphocytaires polyclonales lors d’infections parasitaires

Mémoire n°6

Régulation de la recombinaison V(D)J

Mémoire n°7

La synapse immunologique

Mémoire n°8

La « cross-présentation » antigénique : une fonction spécifique des cellules dendritiques

Mémoire n°9

Les interférons de type I : Cytokines de l’immunité innée et adaptative ?

Mémoire n°10

Les rôles de DC-SIGN, un récepteur spécifiquement exprimé par les cellules dendritiques

Mémoire n°11

Toll-like receptors and innate immune system : Defense mechanism against microbial pathogens

Mémoire n°12

Récepteur Fcg et autoimmunité

Mémoire n°13

Rôle de BAFF/Blys (membre de la famille du TNF) dans l’autoimmunité

Mémoire n°14

Influence des lymphocytes T régulateurs de l'auto-immunité sur la réponse immunitaire antitumorale

Mémoire n°15

Tolérance immunitaire et développement embryonnaire

Mémoire n°16

Origine et homéostasie des lymphocytes T CD4+ CD25+ régulateurs de l'autoimmunité

Mémoire n°17

Reconnaissance spécifique du CMV (cytomégalovirus) par les cellules NK

Mémoire n°18

Rôle et mode d'action des lymphocytes T régulateurs dans le contrôle des pathologies auto-immunes

Mémoire n°19

Les radeaux lipidiques : leur rôle dans l’activation des lymphocytes T

Mémoire n°20

Mécanisme moléculaire de l’immunité innée : exemple du rôle de la protéine IRAK4

Mémoire n°21

Chimiokines et homing cellulaire

Mémoire n°22

Immunothérapie cellulaire des mélanomes

Mémoire n°23

Principes des stratégies thérapeutiques vaccinales anti-tumorales

Mémoire n°24

Implication des lymphocytes T régulateurs dans le développement des cancers

Mémoire n°25

Rôle des Lymphocytes T dans la survenue du neuropaludisme chez l'homme et la souris

 

 

Téléchargez gratuitement le logiciel Acrobat Reader permettant de visualiser et d'imprimer les fichiers en PDF.

 


Mémoire n°1

Fonction des molécules CD3 et pré-TCRa lors des premières étapes de sélection des lymphocytes T dans le thymus

 

Revue.   Wiest, D. L., Berger, M. A., and Carleton, M. (1999) Control of early thymocyte development by the pre-T cell receptor complex: A receptor without a ligand? Semin. Immunol. 11: 251-262.

Article 1. Shinkai, Y., and Alt, F.W. (1994) CD3-mediated signals rescue the development of CD4+CD8+ thymocytes in RAG-2-/- mice in the absence of TCR chain expression. Intern. Immunol. 6: 995-1001.

Article 2. Xu, Y., Davidson, L., Alt, F. W., and Baltimore, D. (1996) Function of the pre-T-cell receptor chain in T-cell development and allelic exclusion at the T-cell receptor locus. Proc. Natl. Acad. Sci. USA 93: 2169-2173.

Article 3. Wang, B. P., Wang, N. H., Whitehurst, C. E., She, J., Chen, J. Z., and Terhorst. C. (1999) T lymphocyte development in the absence of CD3 or CD3///. J. Immunol. 162: 88-94.

Article 4. Aifantis, I., Feinberg, J., Fehling, H. J., Di Santo, J. P., and von Boehmer, H. (1999) Early T cell receptor gene expression is regulated by the pre-T cell receptor-CD3 complex. J. Exp. Med. 190 :141-144.

 


Mémoire n°2

Les lymphocytes NKT

 

Revue.   Kronenberg, M. and Gapin, L (2002) The unconventional lifestyle of NKT cells. Nature Reviews Immunology , 2, 557-568.

Article 1.  Bendelac Albert, Lantz Olivier, Quimby Mary E., Yewdell Jonathan W., Bennink Jack R. and Brutkiewicz Randy R. (1995) CD1 recognition by mouse NK1+ T lymphocytes. Science, 268, 863-865.

Article 2. Eberl, G., Lees, R., Smiley, S. T., Taniguchi, M., Grusby, M. J., and MacDonald, H. R. (1999) Tissue-specific segregation of CD1d-dependent and CD1d-independent NK T cells. J. Immunol. 162 : 6410-6419.

Article 3. Benlagha, K., Weiss, A., Beavis, A., Teyton, L. and Bendelac, A. (2000) In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med., 191, 1895-1903.


Mémoire n°3

Signalisation par les molécules de classe II du CMH dans les cellules dendritiques

 

 


Mémoire n°4

Evolution du système immunitaire/ famille de gènes

 

Revue.   Laird, D. J., De Tomaso, A. W., Cooper, M. D., and Weissman, I. L. (2000) 50 million years of chordate evolution: Seeking the origins of adaptive immunity. Proc. Natl. Acad. Sci. USA 97: 6924-6926.

Article 1. Agrawal, A., Eastman, Q. M., and Schatz, D. G. (1998) Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394: 744-751.

Article 2. Strong, S. J., Mueller, M. G., Litman, R. T., Hawke, N. A., Haire, R. N., Miracle, A. L., Rast, J. P., Amemiya, C. T., and Litman, G. W. (1999) A novel multigene family encodes diversified variable regions. Proc. Natl. Acad. Sci. USA 96: 15080-15085.

Article 3. Richards, M. H., and Nelson, J. L. (2000) The evolution of vertebrate antigen receptors: A phylogenetic approach. Mol. Biol. Evol. 17: 146-155.

Article 4. Cannon, J. P., Haire, R. N., and Litman, G. W. (2002) Identification of diversified genes that contain immunoglobulin-like variable regions in a protochordate. Nature Immunol. 3:1200-1207.


Mémoire n°5

Stimulations lymphocytaires polyclonales lors d’infections parasitaires

 

Revue 1. Reina-San-Martín, B., Cosson, A. and Minoprio, P. (2000) Lymphocyte polyclonal activation: A pitfall for vaccine design against infectious agents.  Parasitol. Today 16: 62-67.

Revue 2. Minoprio, P. (2001) Parasite polyclonal activators: new targets for vaccination approaches? Int. J. Parasitol. 31: 588-591.

Article 1. Pied, S., Voegtlé, D., Matussig, M., Rénia, L., Miltgen, F., Mazier, D., and Cazenave, P. A. (1996) Evidence for a superantigen activity during murine malaria infection. Intern. Immunol. 9:17-25.

Article 2. Reina-San-Martin, B., Degrave, W., Rougeot, C., Cosson, A., Chamond, N., Cordeiro-Da-Silva, A., Arala-Chaves, M., Coutinho, A., and Minoprio, P. (2000) A B-cell mitogen from a pathogenic trypanosome is a eukaryotic proline racemase. Nature Med. 6: 890-897.

Article 3. Biedermann, T., Zimmermann, S., Himmelrich, H., Gumy, A., Egeter, O., Sakrauski, A. K., Seegmuller, I., Voigt, H., Launois, P., Levine, A. D., Wagner, H., Heeg, K., Louis, J. A., and Rocken, M. (2001) IL-4 instructs TH1 responses and resistance to Leishmania major in susceptible BALB/c mice. Nature Immunol. 2: 1054-1060.

Article 4. Borges, M. M., Campos-Neto, A., Sleath, P., Grabstein, K. H., Morrissey, P. J., Skeiky, Y. A., and Reed, S. G. (2001) Potent stimulation of the innate immune system by a Leishmania brasiliensis recombinant protein. Infect. Immun. 69: 5270-5277.


Mémoire n°6

Régulation de la recombinaison V(D)J

 

Revue.   Gellert., M. (2002) V(D)J recombination: RAG proteins, repair factors, and regulation. Annu. Rev. Biochem. 71: 101-132.

Article 1. Stanhope-Baker, P., Hudson, K. M., Shaffer, A. L., Constantinescu, A., and Schlissel, M. S. (1996) Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro. Cell 85: 887-897.

Article 2. West, R. B., and Lieber, M. R. (1998) The RAG-HMG1 complex enforces the 12/23 rule of V(D)J recombination specifically at the double-hairpin formation step. Mol. Cell. Biol. 18: 6408-6415.

Article 3. Huang, J. and Muegge, K. (2001) Control of chromatin accessibility for V(D)J recombination by interleukin-7. J. Leukoc. Biol. 69: 907-911.

Article 4. Ma, Y., Pannicke, U., Schwarz, K., and Lieber, M. R. (2002) Hairpin Opening and Overhang Processing by an Artemis/DNA-Dependent Protein Kinase Complex in Nonhomologous End Joining and V(D)J Recombination. Cell 108: 781-794.


Mémoire n°7

La synapse immunologique

 

Revue Krummel, M. F., and Davis., M. M. (2002). Dynamics of the immunological synapse: finding, establishing and solidifying a connection. Curr. Opin. Immunol. 14: 66-74.

Article 1. Delon, J., Bercovici, N., Raposo, G., Liblau, R. and Trautmann, A. Antigen-dependent and -independent Ca2+ responses triggered in T cells by dendritic cells compared with B cells. (1998). J. Exp. Med. 188: 1473-1484.

Article 2. Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N., and Kupfer, A. (1998). Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395: 82-86.

Article 3. Grakoui, A., Bromley, S. K., Sumen, C. Davis, M. M., Shaw, A. S., Allen, P. M., and Dustin, M. L. (1999). The immunological synapse: A molecular machine controlling T cell activation. Science 285: 221-227.

Article 4. Krummel, M. F., Sjaastad, M. D., Wulfing, C., and Davis, M. M. (2000). Differential clustering of CD4 and CD3zeta during T cell recognition. Science 289: 1349-1352.


Mémoire n°8

La « cross-présentation » antigénique : une fonction spécifique des cellules dendritiques

 

Revue.   Mellman, I, Steinman, R. M. (2001). Dendritic cells: specialized and regulated antigen processing machines. Cell 106: 255-258.

Article 1. Albert, M. L., Pearce, S. F., Francisco, L. M., Sauter, B., Roy, P., Silverstein, R. L., Bhardwaj, N. (1998). Immature dendritic cells phagocytose apoptotic cells via avb5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med. 188: 1359-1368.

Article 2. Albert, M. L., Sauter, B., Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. (1998). Nature 392: 86-89.

Article 3. Sauter, B., Albert, M. L., Francisco, L., Larsson, M., Somersan, S., Bhardwaj, N. (2000). Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med. 191: 423-434.

Article 4. Albert, M. L., Jegathesan, M., Darnell, R. B. (2001). Dendritic cell maturation is required for the cross-tolerization of CD8+ T cells. Nat Immunol. 2: 1010-1017.


Mémoire n°9

Les interférons de type I : Cytokines de l’immunité innée et adaptative ?

 

Revue 1. Palucka, K., Banchereau, J. (1999). Linking innate and adaptive immunity. Nat. Medecine. 5: 868-870.

Revue 2. Biron C. A. (2001) Interferons a and b as immune regulators - a new look. Immunity. 14, 661-664.

Article 1. Kadowaki, N., Antonenko, S., Lau, J. Y., Liu, Y. J. (2000). Natural interferon alpha/beta-producing cells link innate and adaptive immunity. J. Exp. Med. 192: 219-226.

Article 2. Siegal, F. P., Kadowaki, N., Shodell, M., Fitzgerald-Bocarsly, P. A., Shah, K., Ho, S., Antonenko, S., Liu, Y. J. (1999). The nature of the principal type 1 interferon-producing cells in human blood. Science 284: 1835-1837.

Article 3. Santini, S. M., Lapenta, C., Logozzi, M., Parlato, S., Spada, M., Di Pucchio, T., Belardelli, F. (2000). Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice. J. Exp. Med. 191: 1777-1788.

Article 4. Le Bon, A., Schiavoni, G., D'Agostino, G., Gresser, I., Belardelli, F., Tough, D. F. (2001). Type i interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 14: 461-470.


Mémoire n°10

Les rôles de DC-SIGN, un récepteur spécifiquement exprimé par les cellules dendritiques

 

Revue 1. Steinman, R. M. (2000).  DC-SIGN: a guide to some mysteries of dendritic cells. Cell 100: 491-494.

Revue 2. Kaufmann, S. H. and Schaible, U. E. (2003). A Dangerous Liaison between Two Major Killers: Mycobacterium tuberculosis and HIV Target Dendritic Cells through DC-SIGN. J. Exp. Med. 197: 1-5.

Article 1. Geijtenbeek, T. B., Torensma, R., van Vliet, S. J., van Duijnhoven, G. C., Adema, G. J., van Kooyk, Y. and Figdor, C. G. (2000). Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100: 575-585.

Article 2. Geijtenbeek, T. B., Krooshoop, D. J., Bleijs, D. A., van Vliet, S. J., van Duijnhoven, G. C., Grabovsky, V., Alon, R., Figdor, C. G. and van Kooyk, Y. (2000). DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking. Nat Immunol. 1: 353-357.

Article 3. Kwon, D. S., Gregorio, G., Bitton, N., Hendrickson, W. A. and Littman, D. R. (2002). DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. Immunity 16: 135-144.

Article 4. Halary, F., Amara, A., Lortat-Jacob, H., Messerle, M., Delaunay, T., Houles, C., Fieschi, F., Arenzana-Seisdedos, F., Moreau, J. F. and Dechanet-Merville, J. (2002). Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection. Immunity 17: 653-664.

Article 5. Geijtenbeek TB, Van Vliet SJ, Koppel EA, Sanchez-Hernandez M, Vandenbroucke-Grauls CM, Appelmelk B, Van Kooyk Y. (2003). Mycobacteria Target DC-SIGN to Suppress Dendritic Cell Function. J. Exp. Med. 197: 7-17.


Mémoire n°11

Toll-like receptors and innate immune system : Defense mechanism against microbial pathogens

 

Revue.   Aderem, A. and Ulevitch, R. J. (2000). Toll-like receptors in the induction of the innate immune response. Nature 406: 782-787.

Article 1. Rock, F. L., Hardiman, G., Timans, J. C., Kastelein, R. A. and Bazan, J. F. (1998). A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. U S A 95: 588-593.

Article 2. Takeuchi, O. et al. (1999). Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11: 443-451.

Article 3. Kawai, T., Adachi, O., Ogawa, T., Takeda, K. and Akira, S. (1999). Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11 : 115-122.

Article 4. Hemmi, H. et al. (2000). A Toll-like receptor recognizes bacterial DNA. Nature 408: 740-745.


Mémoire n°12

Récepteur Fcg et autoimmunité

 

Revue.   Ravetch, J. V., and Lanier, L. L. (2000). Immune inhibitory receptors. Science 290: 84-88.

Article 1. Clynes, R., Maizes, J. S., Giunamard, R., Ono, M., Takai, T., and Ravetch, J. F. (1999). Modulation of immune complex-induced inflammation in vivo by the coordinate expression of activation and inhibitory Fc receptors. J. Exp. Med. 189: 179-185.

Article 2. Kleinau, S., Martinsson, P., and Heymann, B. (2000). Induction and suppression of collagen-induced arthritis is dependent on distinct Fcg receptors. J. Exp. Med. 191: 1611-1616.

Article 3. Bolland, S., and Ravetch, J. V. (2000). Spontaneous autoimmune disease in FcRgIIB deficient mice results from strain-specific epistasis. Immunity 13: 277-285.


Mémoire n°13

Rôle de BAFF/Blys (membre de la famille du TNF) dans l’autoimmunité

 

 


Mémoire n°14

Influence des lymphocytes T régulateurs de l'auto-immunité sur la réponse immunitaire antitumorale

 

Revue.   Sakaguchi, S., Sakaguchi, N., Shimizu, J., et al. (2001) Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol. Rev. 182, 18-32. 

Article 1. Shimizu, J., Yamazaki, S. and Sakaguchi, S. (1999). Induction of tumor immunity by removing CD25+CD4+ T cells : a common basis between tumor immunity and autoimmunity. J. Immunol. 163, 5211-5218.

Article 2. Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E. (1999) Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res. 59, 3128-33.

Article 3. Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C, Chauffert B, Solary E, Bonnotte B, Martin F (2004) CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J. Immunol. 34, 336-44.

Article 4. Wang HY, Lee DA, Peng G, Guo Z, Li Y, Kiniwa Y, Shevach EM, Wang RF (2004) Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy. Immunity. 20, 107-18.


Mémoire n°15

Tolérance immunitaire et développement embryonnaire

 

Revue 1. Thellin O, Heinen E. (2003) Pregnancy and the immune system: between tolerance and rejection. Toxicology. 185, 179-184.

Revue 2. Kanellopoulos-Langevin C, Caucheteux SM, Verbeke P, Ojcius DM. (2003) Tolerance of the fetus by the maternal immune system: role of inflammatory mediators at the feto-maternal interface. Reprod Biol Endocrinol. 2, 121.

Revue 3. Bainbridge D, Ellis S, Le Bouteiller P, Sargent I. (2001) HLA-G remains a mystery. Trends Immunol. 22, 548-552.   

Article 1. Tafuri A, Alferink J, Moller P, Hammerling GJ, Arnold B. (1995) T cell awareness of paternal alloantigens during pregnancy. Science 270, 630-633.

Article 2. Kauma SW, Huff TF, Hayes N, Nilkaeo A. (1999) Placental Fas ligand expression is a mechanism for maternal immune tolerance to the fetus. J Clin Endocrinol Metab. 84, 2188-2194.

Article 3. Rouas-Freiss N, Goncalves RM, Menier C, Dausset J, Carosella ED. (1997) Direct evidence to support the role of HLA-G in protecting the fetus from maternal uterine natural killer cytolysis. Proc Natl Acad Sci U S A. 94, 11520-11525.

Article 4Aluvihare VR, Kallikourdis M, Betz AG. (2004) Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol. 5, 266-271.


Mémoire n°16

Origine et homéostasie des lymphocytes T CD4+ CD25+ régulateurs de l'autoimmunité

 

Revue.   Sakaguchi, S., Sakaguchi, N., Shimizu, J., Yamazaki, S., Sakihama, T., Itoh, M., Kuniyasu, Y., Nomura, T., Toda, M. and Takahashi, T. (2001). Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol. Rev. 182: 18-32.

Article 1. C. A. Piccirillo and E. M. Shevach (2001) Control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. J.Immunol. 167, 1137-1140.

Article 2. D. Dieckmann, C. H. Bruett, H. Ploettner, M. B. Lutz, and G. Schuler (2002) Human CD4+CD25+ regulatory, contact-dependent T cells induce interleukin 10-producing, contact-independent type 1-like regulatory T cells [corrected]. J.Exp.Med.  196, 247-253.

Article 3. G. Oldenhove, M. de Heusch, G. Urbain-Vansanten, J. Urbain, C. Maliszewski, O. Leo, and M. Moser (2003) CD4+ CD25+ regulatory T cells control T helper cell type 1 responses to foreign antigens induced by mature dendritic cells in vivo. J.Exp.Med. 198, 259-266.

Article 4. L. Klein, K. Khazaie, and H. von Boehmer (2003) In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc.Natl.Acad.Sci.USA 100, 8886-8891.


Mémoire n°17

Reconnaissance spécifique du CMV (cytomégalovirus) par les cellules NK

 

Revue.    D. H. Raulet (2003) Roles of the NKG2D immunoreceptor and its ligands. Nat.Rev.Immunol. 3, 781-790. 

Article 1. M. Lodoen, K. Ogasawara, J. A. Hamerman, H. Arase, J. P. Houchins, E. S. Mocarski, and L. L. Lanier (2003) NKG2D-mediated natural killer cell protection against cytomegalovirus is impaired by viral gp40 modulation of retinoic acid early inducible 1 gene molecules. J.Exp.Med. 197, 1245-1253.

Article 2. A. Rölle, M. Mousavi-Jazi, M. Eriksson, J. Odeberg, C. Soderberg-Naucler, D. Cosman, K. Karre, and C. Cerboni (2003) Effects of human cytomegalovirus infection on ligands for the activating NKG2D receptor of NK cells: up-regulation of UL16-binding protein (ULBP)1 and ULBP2 is counteracted by the viral UL16 protein. J.Immunol. 171, 902-908.

Article 3. D. Cosman, J. Mullberg, C. L. Sutherland, W. Chin, R. Armitage, W. Fanslow, M. Kubin, and N. J. Chalupny (2001) ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14, 123-133.


Mémoire n°18

Rôle et mode d'action des lymphocytes T régulateurs dans le contrôle des pathologies auto-immunes

 

Revue 1. J. Sprent and C. D. Surh (2001) Generation and maintenance of memory T cells. Curr.Opin.Immunol. 13, 248-254.

Revue 2. D. Masopust, S. M. Kaech, E. J. Wherry, and R. Ahmed (2004) The role of programming in memory T-cell development. Curr.Opin.Immunol. 16, 217-225. 

Article 1S. M. Kaech and R. Ahmed (2001) Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nature Immunol. 2, 415-422.

Article 2D. Homann, L. Teyton, and M. B. Oldstone (2001) Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nature Med. 7, 913-919.

Article 3T. C. Becker, E. J. Wherry, D. Boone, K. Murali-Krishna, R. Antia, A. Ma, and R. Ahmed (2002) Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J.Exp.Med. 195, 1541-1548.

Article 4D. J. Shedlock and H. Shen (2003) Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300, 337-339.

Article 5S. M. Kaech, J. T. Tan, E. J. Wherry, B. T. Koniecznyl, C. D. Surh, and R. Ahmed (2003) Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Anonymous. Anonymous.  Nature Immunol. 4, 1191-1198.

Article 6J. C. Sun and M. J. Bevan (2003) Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300, 339-342.

Article 7J. Song, S. Salek-Ardakani, P. R. Rogers, M. Cheng, L. Van Parijs, and M. Croft (2004) The costimulation-regulated duration of PKB activation controls T cell longevity. Nature Immunol. 5, 150-158.


Mémoire n°19

Les radeaux lipidiques: leur rôle dans l'activation des lymphocytes T

 

Revue.    Alonso, M. A. and Millan, J. (2001). The role of lipid rafts in signalling and membrane trafficking in T lymphocytes. J. Cell. Sci. 114: 3957-3965.  

Article 1. Xavier, R., Brennan, T., Li, Q., McCormack, C. and Seed, B. (1998). Membrane compartmentation is required for efficient T cell activation. Immunity 8: 723-732.

Article 2. Janes, P. W., Ley, S. C. and Magee, A. I. (1999). Aggregation of lipid rafts accompagnes signaling via the T cell antigen receptor.J. Cell. Biol. 147: 447-461.

Article 3. Viola, A., Schroeder, S., Sakakibara, Y. and Lanzavecchia, A. (1999). T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283: 680-682.

Article 4. Drevot, P., Langlet, C., Guo, X. J., Bernard, A. M., Colard, O., Chauvin, J. P., Lasserre, R., He, H. T. (2002). TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. EMBO J. 21: 1899-1908.


Mémoire n°20

Mécanismes moléculaires de l'immunité innée: exemple du rôle de la protéine IRAK1

 

 


Mémoire n°21

Chimiokines et homing cellulaire

 

 


Mémoire n°22

Immunothérapie cellulaire des mélanomes

 

Revue 1. P. G. Coulie, V. Karanikas, C. Lurquin, D. Colau, T. Connerotte, T. Hanagiri, A. Van Pel, S. Lucas, D. Godelaine, C. Lonchay, M. Marchand, N. van Baren, and T. Boon (2002) Cytolytic T-cell responses of cancer patients vaccinated with a MAGE antigen. Immunol.Rev. 188, 33-42.

Revue 2. V. H. Engelhard, T. N. Bullock, T. A. Colella, S. L. Sheasley, and D. W. Mullins (2002) Antigens derived from melanocyte differentiation proteins: self-tolerance, autoimmunity, and use for cancer immunotherapy. Immunol.Rev. 188, 136-146.

Article 1J. Cui, T. Shin, T. Kawano, H. Sato, E. Kondo, I. Toura, Y. Kaneko, H. Koseki, M. Kanno, and M. Taniguchi (1997) Requirement for Va14 NKT cells in IL-12-mediated rejection of tumors. Science  278, 1623-1626.

Article 2R. Soiffer, T. Lynch, M. Mihm, K. Jung, C. Rhuda, J. C. Schmollinger, F. S. Hodi, L. Liebster, P. Lam, S. Mentzer, S. Singer, K. K. Tanabe, A. B. Cosimi, R. Duda, A. Sober, A. Bhan, J. Daley, D. Neuberg, G. Parry, J. Rokovich, L. Richards, J. Drayer, A. Berns, S. Clift, L.K. Cohen, R.C. Mulligan and G. Dranoff (1998) Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc.Natl.Acad.Sci.USA 95, 13141-13146.

Article 3S. A. Rosenberg, J. C. Yang, D. J. Schwartzentruber, P. Hwu, F. M. Marincola, S. L. Topalian, N. P. Restifo, M. Sznol, S. L. Schwarz, P. J. Spiess, J. R. Wunderlich, C. A. Seipp, J. H. Einhorn, L. Rogers-Freezer, and D. E. White (1999) Impact of cytokine administration on the generation of antitumor reactivity in patients with metastatic melanoma receiving a peptide vaccine. J.Immunol. 163, 1690-1695.

Article 4M. E. Dudley, J. R. Wunderlich, P. F. Robbins, J. C. Yang, P. Hwu, D. J. Schwartzentruber, S. L. Topalian, R. Sherry, N. P. Restifo, A. M. Hubicki, M. R. Robinson, M. Raffeld, P. Duray, C. A. Seipp, L. Rogers-Freezer, K. E. Morton, S. A. Mavroukakis, D. E. White, and S. A. Rosenberg (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298, 850-854.

Article 5G. Q. Phan, J. C. Yang, R. M. Sherry, P. Hwu, S. L. Topalian, D. J. Schwartzentruber, N. P. Restifo, L. R. Haworth, C. A. Seipp, L. J. Freezer, K. E. Morton, S. A. Mavroukakis, P. H. Duray, S. M. Steinberg, J. P. Allison, T. A. Davis, and S. A. Rosenberg (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc.Natl.Acad.Sci.USA 100, 8372-8377.

Article 6N. Meidenbauer, J. Marienhagen, M. Laumer, S. Vogl, J. Heymann, R. Andreesen, and A. Mackensen (2003) Survival and tumor localization of adoptively transferred Melan-A-specific T cells in melanoma patients. J.Immunol. 170, 2161-2169.

Article 7P. Zajac, D. Oertli, W. Marti, M. Adamina, M. Bolli, U. Guller, C. Noppen, E. Padovan, E. Schultz-Thater, M. Heberer, and G. Spagnoli (2003) Phase I/II clinical trial of a nonreplicative vaccinia virus expressing multiple HLA-A0201-restricted tumor-associated epitopes and costimulatory molecules in metastatic melanoma patients. Hum.Gene Ther. 14, 1497-1510.


Mémoire n°23

Principes des stratégies thérapeutiques vaccinales anti-tumorales

 

Revue 1. E. Jäger, D. Jäger, and A. Knuth (2002) Clinical cancer vaccine trials. Curr.Opin.Immunol. 14, 178-182.

Revue 2. E. Tartour, F. Benchetrit, N. Haicheur, O. Adotevi, and W. H. Fridman (2002) Synthetic and natural non-live vectors: rationale for their clinical development in cancer vaccine protocols. Vaccine 20, A32-A39.

Article 1H. L. Greenstone, J. D. Nieland, K. E. de Visser, M. L. De Bruijn, R. Kirnbauer, R. B. Roden, D. R. Lowy, W. M. Kast, and J. T. Schiller (1998) Chimeric papillomavirus virus-like particles elicit antitumor immunity against the E7 oncoprotein in an HPV16 tumor model. Proc.Natl.Acad.Sci.USA 95, 1800-1805.

Article 2E. Jäger, S. Gnjatic, Y. Nagata, E. Stockert, D. Jäger, J. Karbach, A. Neumann, J. Rieckenberg, Y. T. Chen, G. Ritter, E. Hoffman, M. Arand, L. J. Old, and A. Knuth (2000) Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+ cancers. Proc.Natl.Acad.Sci.USA 97, 12198-12203.

Article 3C. Jackaman, C. S. Bundell, B. F. Kinnear, A. M. Smith, P. Filion, D. van Hagen, B. W. Robinson, and D. J. Nelson (2003) IL-2 intratumoral immunotherapy enhances CD8+ T cells that mediate destruction of tumor cells and tumor-associated vasculature: a novel mechanism for IL-2.  J.Immunol. 171, 5051-5063.

Article 4W. W. Overwijk, M. R. Theoret, S. E. Finkelstein, D. R. Surman, L. A. de Jong, F. A. Vyth-Dreese, T. A. Dellemijn, P. A. Antony, P. J. Spiess, D. C. Palmer, D. M. Heimann, C. A. Klebanoff, Z. Yu, L. N. Hwang, L. Feigenbaum, A. M. Kruisbeek, S. A. Rosenberg, and N. P. Restifo (2003) Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J.Exp.Med. 198, 569-580.

Article 5L. Zhang, Y. Tang, H. Akbulut, D. Zelterman, P. J. Linton, and A. B. Deisseroth (2003) An adenoviral vector cancer vaccine that delivers a tumor-associated antigen/CD40-ligand fusion protein to dendritic cells. Proc.Natl.Acad.Sci.USA 100, 15101-15106.

Article 6E. S. Schultz, B. Schuler-Thurner, V. Stroobant, L. Jenne, T. G. Berger, K. Thielemanns, Bruggen P. van der, and G. Schuler (2004) Functional analysis of tumor-specific Th cell responses detected in melanoma patients after dendritic cell-based immunotherapy. J.Immunol. 172, 1304-1310.


Mémoire n°24

Implication des lymphocytes T régulateurs dans le développement des cancers

 

Revue.      

Article 1M. Iwashiro, R. J. Messer, K. E. Peterson, I. M. Stromnes, T. Sugie, and K. J. Hasenkrug (2001) Immunosuppression by CD4+ regulatory T cells induced by chronic retroviral infection. Proc.Natl.Acad.Sci.USA 98, 9226-9230.

Article 2G. Oldenhove, M. de Heusch, G. Urbain-Vansanten, J. Urbain, C. Maliszewski, O. Leo, and M. Moser (2003) CD4+ CD25+ regulatory T cells control T helper cell type 1 responses to foreign antigens induced by mature dendritic cells in vivo. J.Exp.Med. 198, 259-266.

Article 3S. Suvas, U. Kumaraguru, C. D. Pack, S. Lee, and B. T. Rouse (2003) CD4+CD25+ T cells regulate virus-specific primary and memory CD8+ T cell responses. J.Exp.Med. 198, 889-901.

Article 4E. M. Aandahl, J. Michaelsson, W. J. Moretto, F. M. Hecht, and D. F. Nixon (2004) Human CD4+ CD25+ regulatory T cells control T-cell responses to human immunodeficiency virus and cytomegalovirus antigens. J.Virol. 78, 2454-2459.


Mémoire n°25

Implication des lymphocytes T régulateurs dans le développement des cancers

 

Revue 1. J. Lou, R. Lucas, and G. E. Grau (2001) Pathogenesis of cerebral malaria: recent experimental data and possible applications for humans. Clin.Microbiol.Rev. 14, 810-20.

Revue 2. de Souza Brian and E. M. Riley (2002) Cerebral malaria: the contribution of studies in animal models to our understanding of immunopathogenesis.  Microbes.Infect. 4, 291-300.

Article 1L. Hviid, J. A. L. Kurtzhals, B. Q. Goka, J. O. Oliver-Commey, F. K. Nkrumah, and T. G. Theander (1997) Rapid reemergence of T cells into peripheral circulation following treatment of severe and uncomplicated Plasmodium falciparum malaria. Infect.Immun. 65, 4090-4093.

Article 2J. Hearn, N. Rayment, D. N. Landon, D. R. Katz, and J. B. De Souza (2000) Immunopathology of cerebral malaria: Morphological evidence of parasite sequestration in murine brain microvasculature. Infect.Immun. 68, 5364-5376.

Article 3W. L. Chang, S. P. Jones, D. J. Lefer, T. Welbourne, G. Sun, L. Yin, H. Suzuki, J. Huang, D. N. Granger, and H. C. van der Heyde (2001) CD8+-T-cell depletion ameliorates circulatory shock in Plasmodium berghei-infected mice. Infect.Immun. 69, 7341-7348.

 

page administrée par Adrien Six

page créée le 25 février 2004

page modifiée le 20 juin 2004