Réponses B thymodépendantes et thymoindépendantes

BMC 423 (IF) - 2007 Antonino Nicoletti

www.u681.jussieu.fr -> Didactic Material -> M1 BMC 423 antonino.nicoletti@upmc.fr

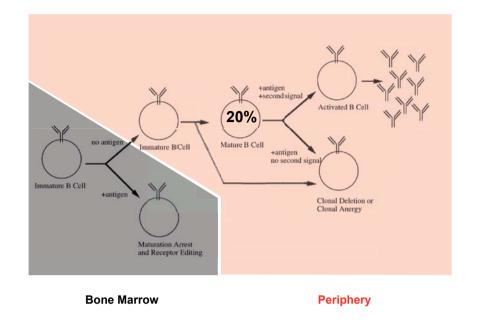
TD vs TI humoral immune responses

•Most antibody (B cell) responses need "help"= "Thymus-Dependent" (TD) responses

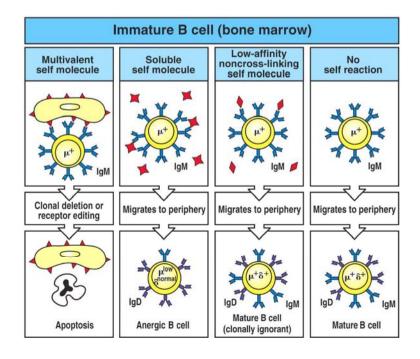
"Help" comes from T cells (signal 2)

Most help comes from T_H^2 but T_H^1 can also provide help

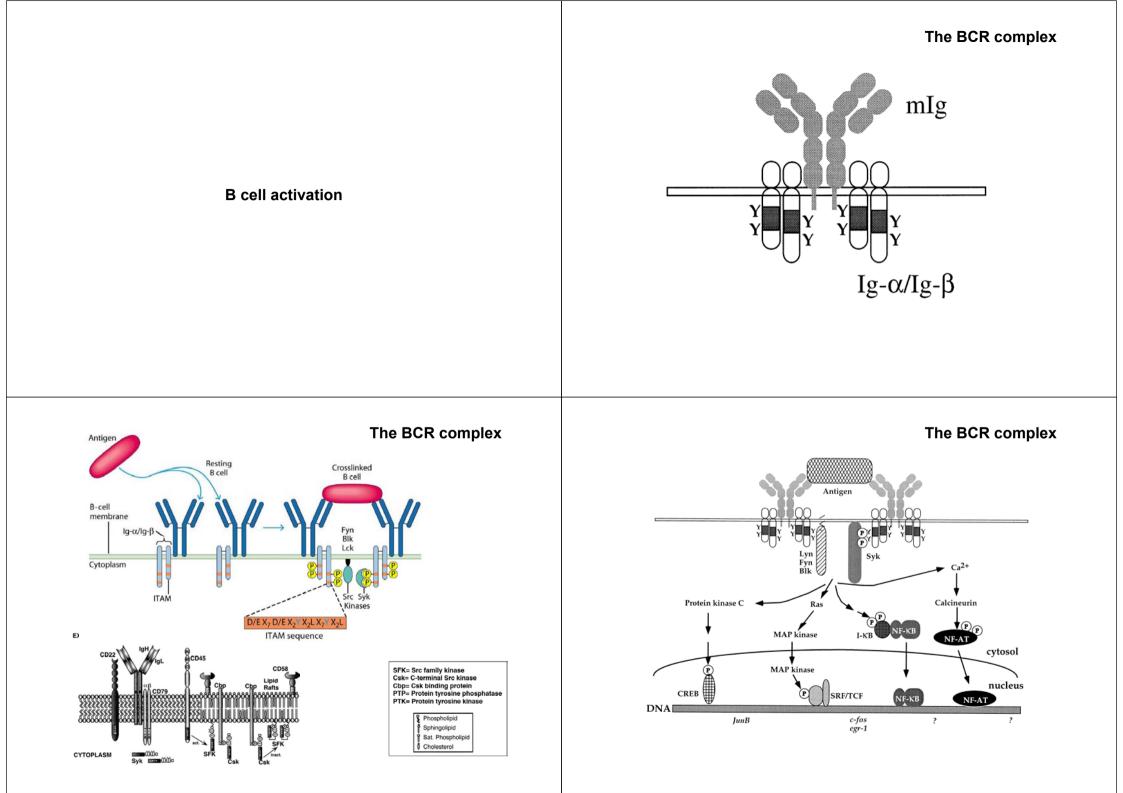
T help controls or partly controls B cell proliferation, class switching, initiation of somatic mutations and memory

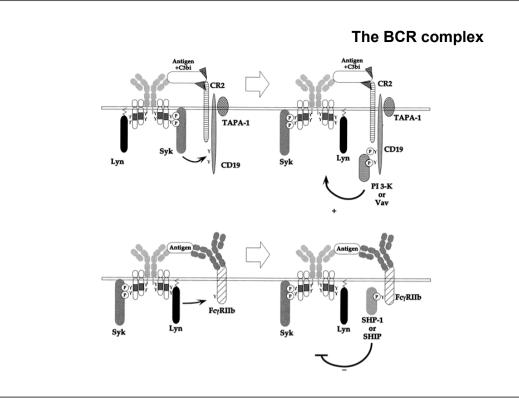

Antigens that activate in this way are said to be thymus-dependent antigens

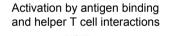
• There are also antibody responses that do not require T help = "Thymus-independent" (TI) antibody responses

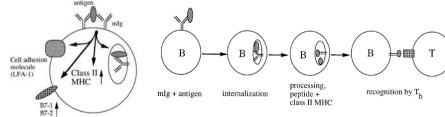

Antigens that activate in this way are said to be thymus-independent antigens

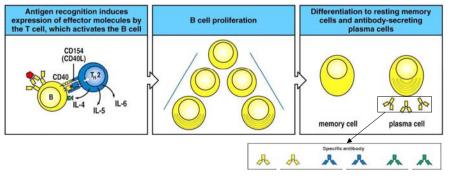
PLAN

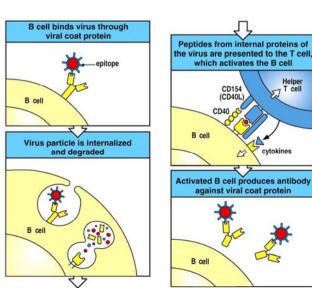

	 B cell development and classification
	B cell activation
	Thymodependent B(2) cell response
	Thymo-independent B cell response
	[Antibody effector mechanisms]
ng,	B cell development and
nt	classification
ent	

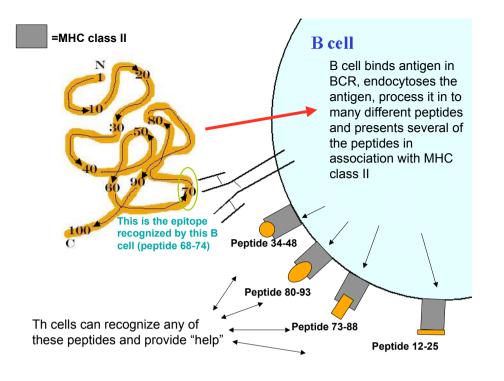





Property	B-1 cells	Conventional B-2 cells	Marginal zone B cells	
When first produced	Fetus	After birth	After birth	
N-regions in VDJ junctions	Few	Extensive	Yes	
V-region repertoire	Restricted	Diverse	Partly restricted	
Primary location	Body cavities (peritoneal, pleural)	Secondary lymphoid organs	Spleen	
Mode of renewal	Self-renewing	Replaced from bone marrow	Long-lived	
Spontaneous production of immunoglobulin	High	Low	Low	
Isotypes secreted	lgM >> lgG	lgG > lgM	lgM > lgG	
Response to carbohydrate antigen	Yes	Maybe	Yes	
Response to protein antigen	Maybe	Yes	Yes	
Requirement for T-cell help	No	Yes	Sometimes	
Somatic hypermutation	Low-none	High	?	
Memory development	Little or none	Yes	?	

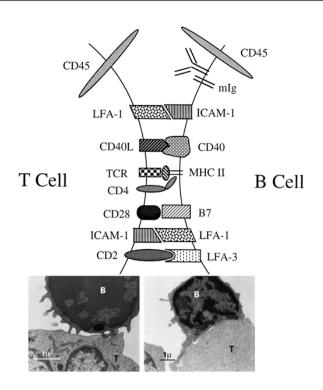


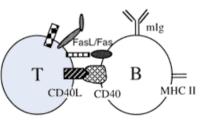


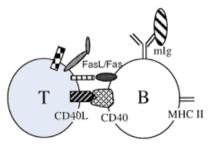


T cells activate B cells that recognize the same Ag but not necessarily the same epitope

Helper T cell


Binding of Ag stimulates MHC II and B-7 expression on B-cell.


MHC/B7 interaction with T-cell receptor induces expression of CD40L on T-cell.


CD40/CD40L interaction provides costimulatory interaction necessary for activation of B-cell.

B-cells induce expression of receptors for cytokines secreted by T-cell. T-cell reorients golgi toward B-cell.

B-cells begin to proliferate and differentiate. Undergo Class switching and affinity maturation

CD40L without Ag: B cell susceptible to Fas Killing: Apoptosis

CD40L with Ag: B cell resistant to Fas killing: Activation

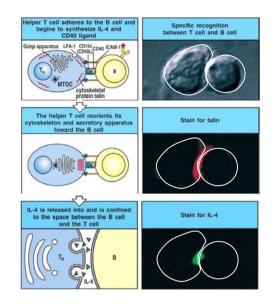
Signal 2 (CD40L) is required for class switching but $T_{\rm H}$ cells make cytokines that influence isotype switching

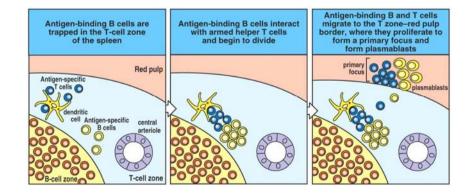
		Role of cytokines in regulating Ig isotype expression						
	Cytokines	IgM	lgG3	lgG1	lgG2b	lgG2a	lgE	lgA
	IL-4	Inhibits	Inhibits	Induces		Inhibits	Induces	
	IL-5							Augments production
	► IFN-γ	Inhibits	Induces	Inhibits		Induces	Inhibits	
	TGF-β	Inhibits	Inhibits		Induces			Induces

Figure 9-7 Immunobiology, 6/e. (© Garland Science 2005)

IFN-g is a hallmark of cell-mediated immune responses so IgG3 and IgG2a are also associated with $T_{\rm H}^{}1$ responses

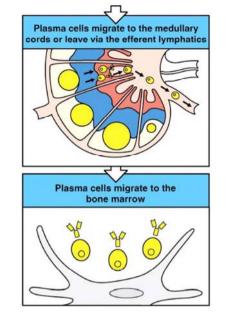
(Mouse data)


Topology of the thymodependent B cell response


B cells that encourter antigen at the Treet/B-cell border become activated. They form primary foci in the medullary cords. Some cells then migrate to the primary follicit, forming a germinal center HEV OPEN CONTROL CONTROL CONTROL CONTROL Those B cells that are trapp zone of t lymphoid they can activated

Those B cells and T cells that bind antigen are trapped in the T cell zone of the peripheral lymphoid organ where they can both get activated and interact

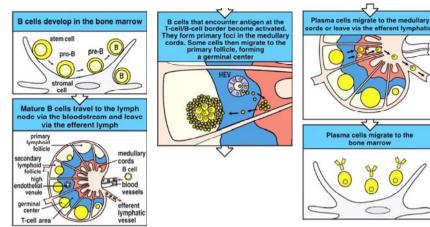
IL-4 is secreted in the direction of the B cell so there is little bystander effect on neighboring B cells



Topology of the thymodependent B cell response

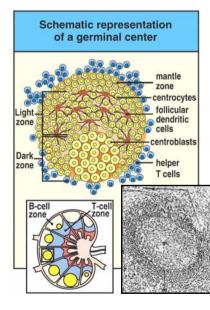
Some B cells in the primary focus differentiate into plasmablasts and plasma cells, leave the area and make antibody. Others go to the B cell zone

Topology of the thymodependent B cell response



Activated B cells eventually differentiate into **plasma cells** for the secretion of antibody and **memory B cells**.

Most plasma cells survive for a few day to a few week. Some are longlived (account for much of the circulating antibodies).

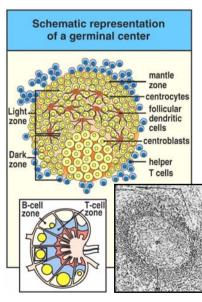

Memory B cell live a long time (years). Memory B cells keep the changes that they acquired in the germinal centers (e.g., class switched, somatic mutations).

Topology of the thymodependent B cell response

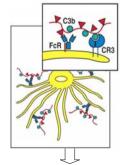
Although 50-100 different antigen-specific B cells originally comprise a GC, by the end of the response all the B cells are from 1 or a few clones

Germinal centers (GC) contain antigen-specific B cells, follicular dendritic cells (FDC) and antigen-specific T cells

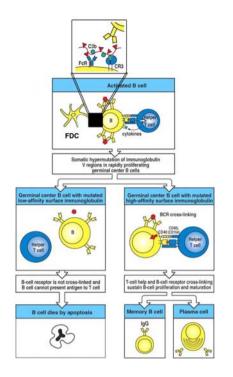
Germinal centers are mostly proliferating B cells but also contain many (10%) T cells


- In the germinal centers, B cells undergo:
- 1.somatic hypermutations
- 2.affinity maturation
- 3.isotype switching

Modification of the amount (proliferation), of the function (switch) and of the efficiency (affinity) of the antibodies

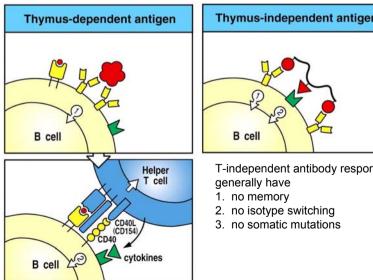

> Centrocyte = B cell; Centroblast = dividing B cell

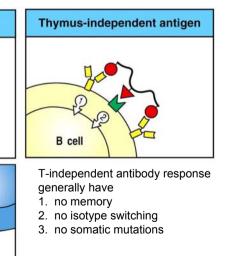
Germinal centers (GC) contain antigen-specific B cells, follicular dendritic cells (FDC) and antigen-specific T cells

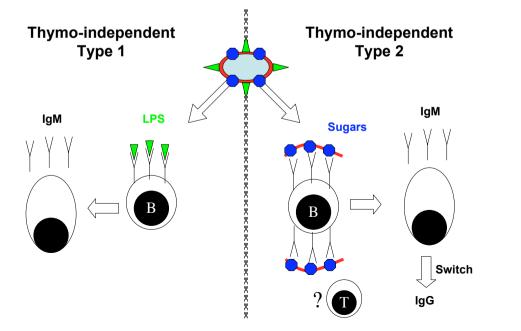


FDC present <u>native</u> antigen:

- 1. bound by antibody and FcR
- 2. bound by complement and complement receptors


B cells competing to bind the antigens presented by FDCs= competition that drive affinity maturation

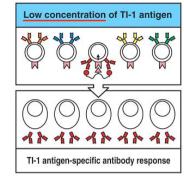



If T cells recognize only peptides, how do you make antibodies to polysaccharides or other non-protein macromolecules?

Thymo-independent B cell response

Some B cell responses require T help whereas other do not

B cells that respond to these Ags are mostly B1a cells

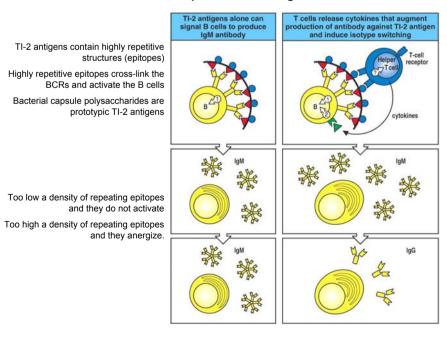

Properties of thymus-dependent and thymus-independent antigens

	TD ANTIGENS	<u> </u>	I ANTIGENS
Property		Туре 1	
Chemical nature	Soluble protein	Bacterial cell-wall components (e.g., LPS))
Humoral response			
Isotype switching	Yes	No	
Affinity maturation	Yes	No	
Immunologic memory	Yes	No	
Polyclonal activation	No	Yes (high doses)	
BCR signaling	"Classic"	Use the BCR as a focusing component that concentrates the polyclonal activator	
Cytokines	Required (from Th)	Required (from non- lymphoid cells)	
Target B cells	Mature only	Mature and immature	

High concentration of TI-1 antigen

Polyclonal B-cell activation; nonspecific antibody response

These are <u>polyclonal B cell activators</u> or <u>B</u> <u>cell mitogens</u>. These can be dangerous because they deregulate B cell responsiveness


At low doses, the TI-1 antigens activate only the antigen-specific B cells but they do it without T cell help. This can be helpful in getting rid rapidly of bacteria (without the need to expand Th cells)

Bacterial lipopolysaccharides (LPS) is the prototypical TI-1 antigen

Properties of thymus-dependent and thymus-independent antigens

	TD ANTIGENS	TI ANTIGENS				
Property		Туре 1	Туре 2			
Chemical nature	Soluble protein	Bacterial cell-wall components (e.g., LPS)	Polymeric protein antigens; capsular polysaccharides			
Humoral response						
Isotype switching	Yes	No	Limited			
Affinity maturation	Yes	No	No			
Immunologic memory	Yes	No	No			
Polyclonal activation	No	Yes (high doses)	No			
BCR signaling	"Classic"	Use the BCR as a focusing component that concentrates the polyclonal activator	Vigorous and prolonged			
Cytokines	Required (from Th)	Required (from non- lymphoid cells)	Required (not necessarily from Th cells)			
Target B cells	Mature only	Mature and immature	Mature only			

B cell response to TI-2 antigens

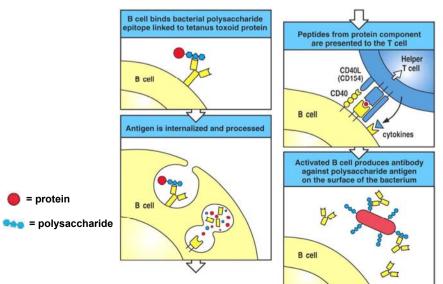
B cell response to TI-1 antigens

B cell response to TI-2 antigens and the role of T cells

Summary of different classes of antigens

- TI-2 responses exist in athymic mice
- Elimination of all $\epsilon~\epsilon~$ and $\epsilon\epsilon~$ T cells blocks TI-2 B cell responses
- May be $\epsilon \epsilon$ or $\epsilon \epsilon$ CD4-/CD8- DN T cells with an extrathymic development which may interact with non classical MHC molecules (such as CD1)

How can we help the immune system to make Abs to TI Ags such as polysaccharides (PS) and other non-protein macromolecules?


Haemophilus influenzae type b vaccine

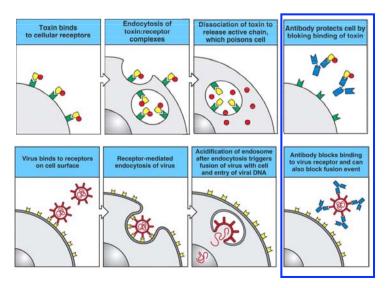
- Prior to the introduction of effective Hib vaccines 20 years ago, Hib = the most common etiologic agent of serious bacterial infections in young children (<5 years)
- Though neonates <3months are rarely affected
- Hib PS = TI-2 Ag. Anti-Hib PS Abs=IgM (also IgG in humans)
- First generation vaccine: purified Hib PS: poor efficacy in children <2 years
- · Second generation vaccines: Hib PS conjugated with one protein carrier
 - Diphteria toxoid (PRP-D): poor efficacy
 - Non-toxic diphteroid toxin (HbOC or HibTiter): OK with 3 inj
 - Meningococcal outer membrane (PRP-OMPC): OK with 1 inj <2 mo of age but not efficient >6 mo
 - Purified tetanus toxoid (PRP-T) : has the advantage of HbOC+PRP-OMPC

	TD antigen	TI-1 antigen	TI-2 antigen		
Antibody response in infants	Yes	Yes	No		
Antibody production in congenitally athymic individual	No	Yes	Yes		
Antibody response in absence of all T cells	No	Yes	No		
Primes T cells	Yes	No	No		
Polyclonal B-cell activation	No	Yes	No		
Requires repeating epitopes	No	No	Yes		
Examples of antigen	Diphtheria toxin Viral hemagglutinin Purified protein derivative (PPD) of Mycobacterium tuberculosis	Bacterial lipopoly- saccharide Brucella abortus	Pneumococcalpoly- saccharide Salmonella polymerized flagellin Dextran Hapten-conjugated Ficoll(polysucrose)		

How can we help the immune system to make Abs to TI Ags such as polysaccharides (PS) and other non-protein macromolecules?

Haemophilus influenzae type b vaccine

Some of the way that antibodies function to protect against infections

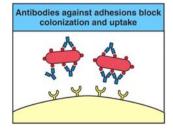

[Antibody effector mechanisms]

(how antibodies help get rid of antigens)

✓ Neutralization and inhibition of adherence

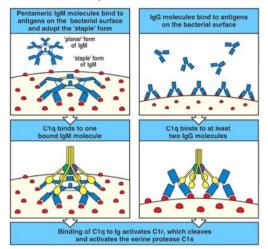
- ✓ Opsonization
- ✓ Complement activation
- ✓ Immune complex clearance by RBC
- ✓ ADCC
- ✓ Mast cell degranulation
- ✓ Eosinophil degranulation

Neutralization of microbial agents



Colonization of cell surface by bacteria via bacterial adhesions A bacteria Some bacteria become internalized and propagate in internal vesicles

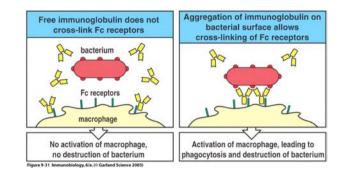
Neutralization of microbial agents


Most bacteria need to attach to a surface to initiate an infection

Antibodies can prevent attachment of bacteria to cell surfaces

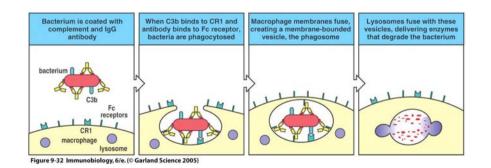
Prevention of adhesion on mucus membranes is particularly important; this is a major role for secretory IgA

Complement activation

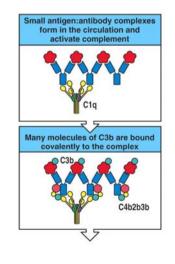


IgM is highly efficient at fixing (activating) complement (A single molecule of IgM bound to a surface can initiate a complement cascade

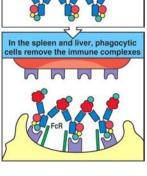
IgGs can fix complement but are less efficient (2 IgG can initiate a complement cascade but getting 2 bound molecules of IgG close together can take lots of IgG)


Free Ig does <u>not</u> bind efficiently to FcR whereas antigen-antibody IC do bind efficiently (IgE-FcRε is an exception)

=> free Igs and IC (Ig+Ag) do not compete with each other for FcR. This allows "innate immunity" to focus on targets already recognized by antibody


IgM does not have free Fc regions and there are few Fc receptors for IgM. But IgM is efficient at complement activation and uses C3b for an opsonin (IgM is not an opsonin but it is very efficient at inducing production of C3b, a good opsonin).

Fc receptors and complement receptors synergize to make phagocytosis of bacteria and other organisms very efficient



Antibodies can activate complement

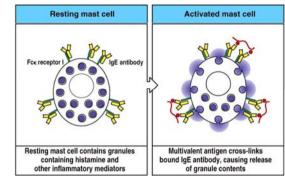
but complement can be activated without antibody Red blood cells (RBC) help clear immune complexes (antigen-antibody complexes) from the blood via complement receptors on the RBCs

Bound C3b binds to the receptor CR1 on erythrocyte surfaces

Immune complexes that are not removed from the blood in the liver or spleen tend to get deposited in the kidneys

This can cause glomerulonephritis (inflammation of the glomeruli) and kidney failure Antibody dependent cell-mediated cytotoxicity (ADCC)

Antibody binds antigens on the surface of target cells Fc receptors on NK cells recognize bound antibody Fc rRIII (C)16) NK cell Target cell Target cell Target cell Cross-linking of Fc receptors signals the NK cell to kill the target cell (C)16) Target cell dies by apoptosis Target cell dies the NK cell to kill the target cell (C)16) Target cell dies the NK cell to kill the target cell (C)16) Target cell dies the NK cell to kill the target cell (C)16) Target cell dies the NK cell to kill the target cell (C)16) Target cell dies the NK cell to kill the target cell (C)16) Target cell dies the NK cell to kill the target cell (C)16) (C)16) Target cell dies the NK cell to kill the target cell (C)16) (C)1


NK has two ways to recognize targets:

- (1) lack of MHC class I on the target (innate immunity)
- (2) antibody on the target (adaptive immunity)

IgE plus antigen causes <u>degranulation</u> of mast cells (granules contain histamine and other compounds that cause inflammation)

Mast cells can bind antibodies with $Fc\epsilon R$ in the absence of antigen (unlike other FcRs) The binding affinity of $Fc\epsilon R$

for IgE is 100 to 50,000 time greater than the affinity of most other FcRs for antibody

Functional activity	lgM	lgD	lgG1	lgG2	lgG3	lgG4	lgA	lgE
Neutralization	+	-	++	++	++	++	++	-
Opsonization	+	-	+++	*	++	+	+	I
Sensitization for killing by NK cells	-	-	++	-	++	-	-	-
Sensitization of mast cells	-	-	+	-	+	-	-	+++
Activates complement system	+++	-	++	+	+++	-	+	-