L'HÉMATOPOIÈSE

BMC 423

Julien FELLAH

L'hématopoïèse se déroule à partir d'une population de cellules rares et indifférenciées :

→ Les cellules souches hématopoïétiques (C.S.H.)

Hématopoïèse : ensemble des mécanismes qui assurent le remplacement régulé et continu des cellules sanguines

Sang : cellules matures des différentes lignées à taux constant et ayant une durée de vie limitée

Les compartiments hématopoïétiques

4 compartiments:

LES CSH

Multipotentes

LES PROGÉNITEURS

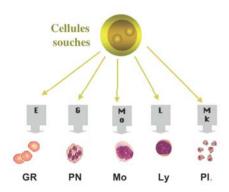
Cellules engagées dans un lignage cellulaire

LES PRÉCURSEURS

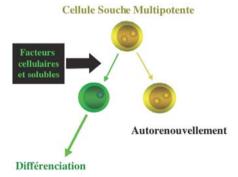
Cellules qui se divisent et se maturent


LES CELLULES MATURES

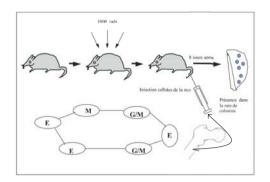
Cellules fonctionnelles qui passent dans le sang

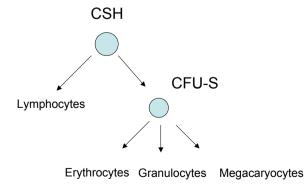

Les Cellules Souches Hématopoïétiques

2 propriétés fondamentales

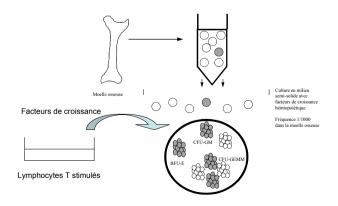

- 1/ L'autorenouvellement : capable de se diviser à l'identique sans se différencier
 - → maintien et amplification du pool de CSH

2/ Multipotence: capacité de se différencier en n'importe quelle cellule du sang


Engagement dans une voie de différenciation par division asymétrique


Caractéristiques des cellules souches hématopoïétiques

- Cellules très rares (0,01% à 0,1% des cellules de la m.o.)
- Pas de marqueurs spécifiques
- Non reconnaissable morphologiquement
- 90% en G0 (stade quiescent)
- Résistent à la congélation (-196°C)


Première mise en evidence des CSH chez la souris Expérience de Till et Mc Culloch (1961)

Chaque colonie est issue d'une seule cellule de la m.o appelée CFU-S : Colony Forming Unit in the Spleen

Mise en évidence des CSH par culture des cellules de m.o. en milieu semi-solide . Expérience de Metcalf (1966)

Mise en évidence des CSH chez l'homme

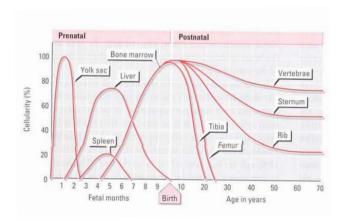
Apport de la pathologie: clonalité des tumeurs

Exemple de la L.M.C. (leucémie myéloïde chronique)

toutes les cellules de la lignée myéloïde

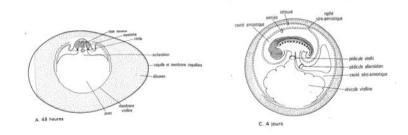
(GR-PN-macrophage-Megacaryocytes) et les lymphocytes B

présentent la même anomalie chromosomique :

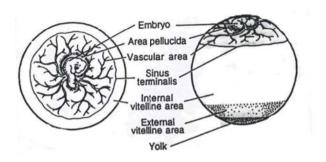

Le chromosome Philadelphie qui résulte d'une translocation entre le chr 9 et le chr 22.

Où sont générées les CSH chez l'embryon?

Travaux réalisés chez le poulet (Nicole le Douarin et Françoise Dieterlin)


Territoires où se déroule l'hématopoïèse

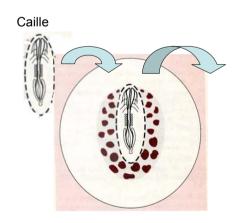
→ Variation au cours du développement


Œufs d'oiseaux deux régions:

blanc d'œuf (l'albumen) et jaune d 'œuf où se développe l'embryon

→ Aires embryonnaires et extra-embryonnaires

Dans l'aire extra-embryonnaire (sac vitellin) apparition des premiers vaisseaux sanguins — Ilôts sanguins (1 er globules rouges)



D'où proviennent les CSH responsables de la formation de ces premiers globules rouges

Aire embryonnaire ou extra-embryonnaire?

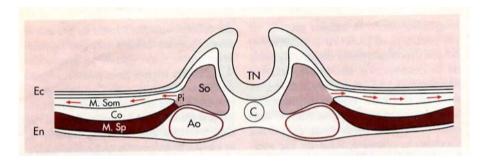
Utilisation des greffes caille-poulet (chimères)

Poulet

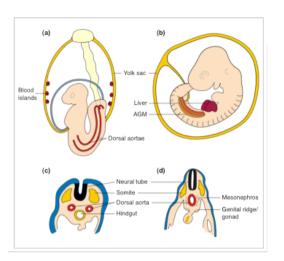
Observations des coupes au microscope:

→ 7 ème jour: GR de type poulet

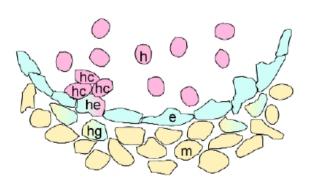
À partir 10 ème jour: GR et lymphocytes de type caille


2 sites de production de CSH qui se succèdent:

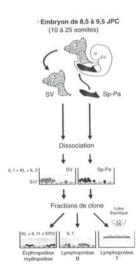
- Sac vitellin : hématopoïèse primitive
- Embryon qui donne les CSH qui colonisent les organes hématopoïétiques (moelle osseuse, thymus)
- Hématopoïèse définitive


Territoire embryonnaire = Splanchnopleure para-aortique

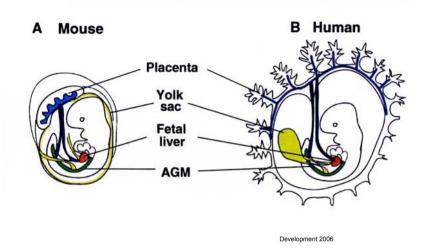
Se transforme en un territoire appelé AGM aorte-gonado-mesonephros


(comprend le plancher de l'aorte dorsale, les ébauches des crétes génitales et l'ébauche du rein)

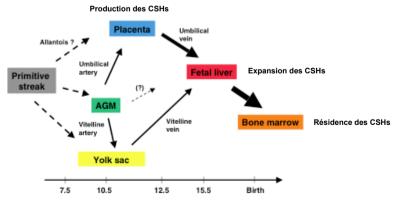
Mêmes successions d'événements chez les mammifères avec deux territoires de production des CSH



Les CSH de l'aorte dorsale


Expériences chez la souris réalisées par A. Cumano

→ 2 générations de CSH qui se succèdent au cours de la vie embryonnaire



	Sac Vitellin		AGM	
	C.Myéloïdes	C. Lymphoïdes	C.Myéloïdes	C. Lymphoïdes
7j-8j	+	-	+	+
9j-10j	+	+	+	+

Le placenta : nouveau site contenant des CSH

Succession de territoires hématopoïétiques

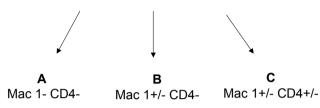
Development 2006

Caractérisation des CSHs de la moelle osseuse

Chez la souris; Experience d'I. Weissman

Utilisation d'anticorps monoclonaux et du tri cellulaire par cytométrie en flux Prélèvement des cellules de la m.o

- → élimination des cellules matures:
- Ac anti CD4, anti-CD8 et anti CD3: lymphocytes T
- Ac anti B220: Lymphocytes B
- Ac anti-Mac-1: Macrophages et cellules NK
- Ac anti-GR20: granulocytes
- Ac anti-Ter 119: Globules rouges

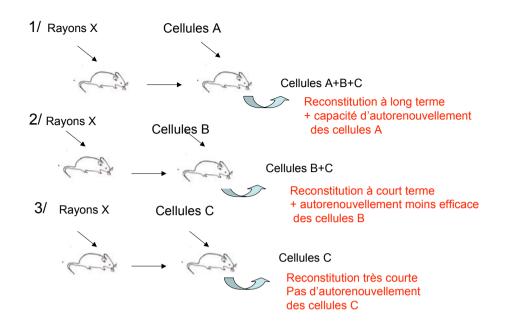

Cellules sans marqueurs de différenciation : cellules LIN-

Utilisation d'autres anticorps

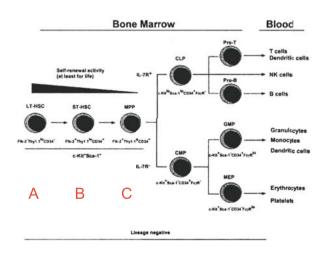
---- Permet d'isoler un population de cellules

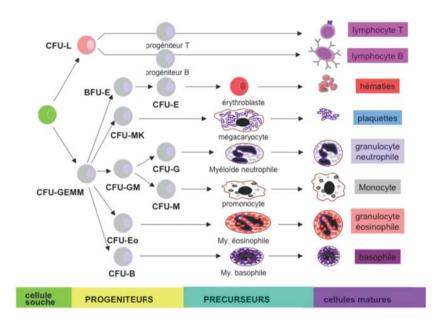
Thy1+/- Sca1+ cKIT+ LIN-

0,02% des cellules de la m.o.= CSH

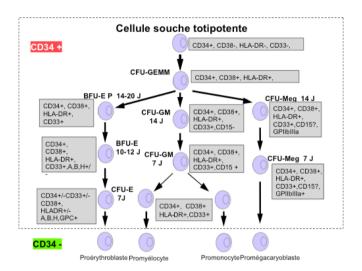


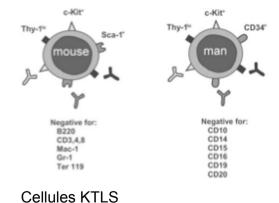
Potentialité de reconstitution A > B > C


Les cellules A (Mac1- CD4- CKIT+ Sca 1+ Thy1 +/- LIN-)


véritables CSHs,

et de **reconstituer** définitivement les territoires hématopoïétiques d'une souris irradiée




Compartiments hématopoïétiques

CD34 marqueur des CSHs humaines

Annurev.med 2005

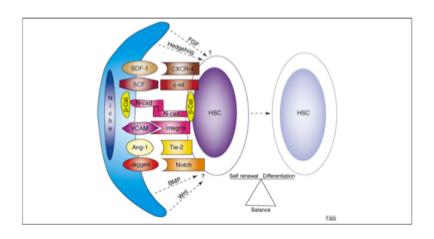
Régulation de l'hématopoïèse

Facteurs extrinsèques

1/ rôle du microenvironnement

→ niche hématopoïétique :

-ostéoblastes (endostéum)


cellules endothéliales
fibroblastes
- Cellules stromales
cellules adipeuses
macrophages
lymphocytes T

-Matrice extra cellulaire : réseau de molécules fibreuses et non fibreuses

2/ Rôle des facteurs de croissance ou cytokines

- Glycoprotéines
- production locale excepté EPO et la TPO poduites à distance respectivement par le rein et le foie
 - cellules du stroma
 - lymphocytes T
 - monocytes/macrophages
- Action à faible concentration
- Action synergique et parfois redondante

Les interactions niche hématopoïétique-CSH

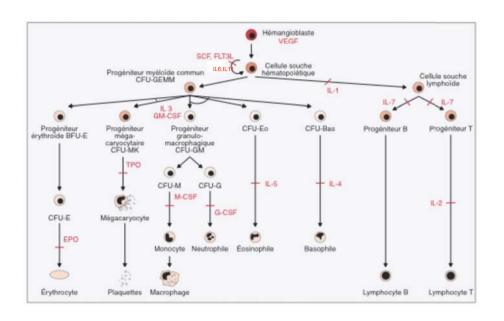
TRENDS in Biochemical Sciences, 2006

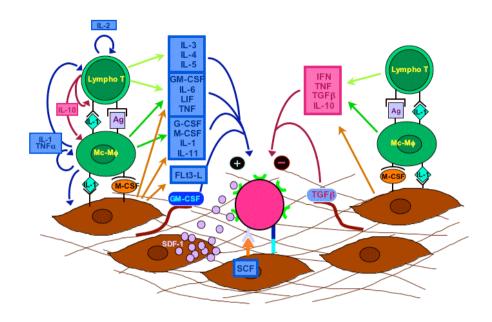
2/ Rôle des facteurs de croissance

Facteurs synergiques: SCF (Stem Cell factor), FLT3-L, IL1 , IL6 , IL11 LIF(Leukemia inhibitory factor),

Action sur les CSH: † survie, † nb en cycle, sensibilisent les cellules aux autres FC(expression des récepteurs)

Facteurs multipotents: IL3, GM-CSF (prog. myéloïdes)

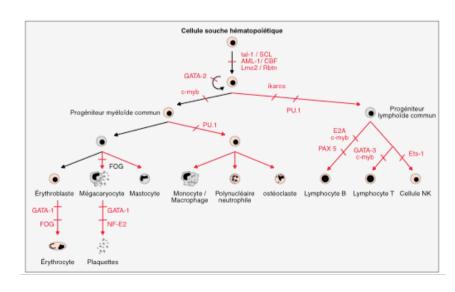

IL7 (prog. Lymphoïdes)


Action sur les progéniteurs: † survie, action sur plusieurs lignées

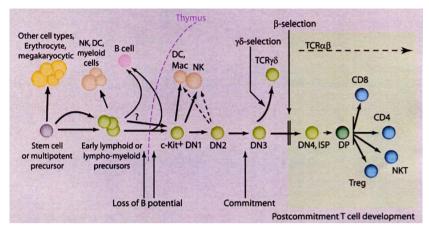
Facteurs restreints: G-CSF, M-CSF, EPO, TPO, IL5

Facteurs de différenciation terminale

Facteurs de maturation


Facteurs intrinsèques

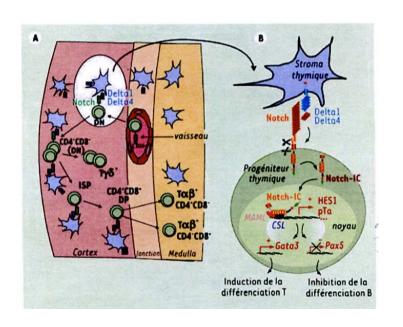
1/ Les facteurs de transcription


Expériences des souris KO

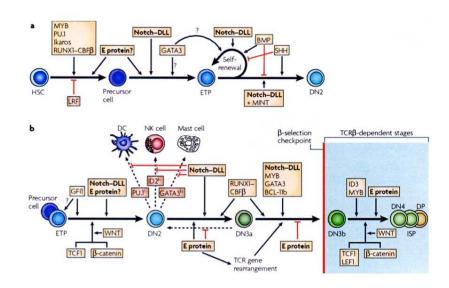
FACTEUR	TYPE	EXPRESSION	PHENOTYPE K/O
GATA-1	Zinc F	Eryth, Meg, E, Mast	Pas d'erythro/megaK
PU.1	Ets	Pr. myéloides, B	Pas de myélop / B
AMLI	Runt	C. hematopoïétiques	Pas d'Hématopoïèse
PAX-5	P. box	Cellules B	Pas de cellules B
IKAROS	Zinc F	Cellules T	Pas de C. lymphoides

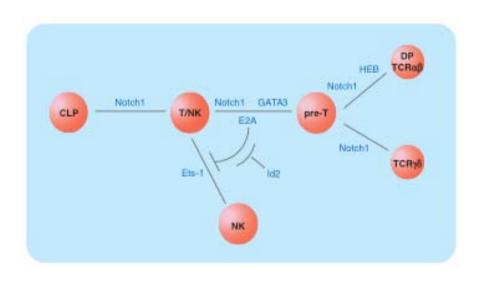
2/ les Facteurs de transcription

La différenciation intrathymique

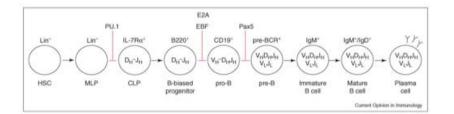


DP: CD4+CD8+


DN1: CD44+CD25-


DN2: CD44+CD25+ DN3: CD44-CD25+ DN: CD4-CD8-

DN4: CD44-CD25-



Les facteurs qui régulent la différenciation T

La différenciation B

Factor	Class	Targets	Expression	Phenotype of kneckout mutant
Multilneage CBFo2 = AML1, PEBP2>B	Rust	TCRs, p. 7, 8, RAG1, CD36; CD3c, lpH	Thymocytes, T-cell lines, B-cell lines, myoloid cell lines, pluripotent pre-	Lack of definitive hematopolesis; all In-
			cursors ,	
c-Myb	Myb	TCRy, 8, CD4, c-kit, Lck, Bcl-27	Hematopoietic cells, other embryonic tipsues	Multifreage fetal hematopolesis detect
PU.1	Ets Winged helix	igH, ig J chain, igx, igx, C079a	PU.1 mainly in B cells and macro- phages, also precursors and early T cells	Prenatal or perinatal death due to mac- rophage loss; also elimination of B cells and stem cells, early loss, late recovery of T-cell development
Ikaros	Zn finger (Hunchback)	CD38, CD2, CD8x, TdT, PAG1, Lck proximal?	T cells, thymocytes, early B cells, hematopoletic stem cells, some myeloid precursors	Dominant negative: no lymphold devel- opment (T. B. NN), some myeloid abnormalities. Null mutation: block of B. NN, fetal T development but post- natel T development recovers
T-Cell "specific" TCF-1	нма	TCRs, p, 8; CD3r; CD4, CD8s, IL-4, IL-13, Lck proximal?	Thymocytes > meture T cells; many nonhematopoletic embryonic cell types	T-cell development blocked during DN — DP transition
LEF-1	HMG	Same as TCF-1	Pre-B cells, thymocytes, many nonhe- matopoietic embryonic cell types	Lack of 8-1 8 cell lineage; lack of whis- kers, hair, teeth; neurological detects; most thymic populations appear OK
Sox-4	HMG	CD2, CD34	Thymocytes, gonads, and multiple embryonic tissues	Cardiac mattermation, early 8 develop- mental defect; also T lineage slow- down
CREB	bZIP (CREBIATF)	TCRα, β; CD2, CD8α	Ubiquitous, also many ubiquitous family members; possible T-cel- specific splice variants	Complete knockout: perinatal death whung detect, also selective block of fetal TCRulii thymocytes, not other hematopoietic cells; dominant nega- tive from T-cell specific promoter: normal T cell development, inhibited response to activation.
GATA-3	Zn finger (GATA)	TCRs, p. s. CDZ, CDSs	Hemanopoietic precursors, T cells, other embryonic tissues, including midbrain and eye	Severe neurologic abnormalities, gross defects in fetal liver hematopolesis; T-lineage developmental block in RAG -/- chimera,
B-Cell "specific" E2A (similar target genes possible for HEB or other bHLH)	bHE.H class A	RAG1, CO4, CO8s, TCRy, IgH, Igx, TdT? EBF? Pax57, cyclin-depen- dent kinase inhibitor p21	Ubiquitous	E2A knockout: severe B-lineage devel- opmental arrest, stowdown of T-lin- eage devel due to early defect. E2ANEB double heterozygotes show similar efects.
EBF	EBF/Off HUH-like	CD79a (ig-a, mb-1), λ5. VoreB, Pax57	Offactory neurons, adipocytes, B-cell precursors	Severe B-lineage developmental arrest
Pax5	Pax Paired, homeo	CD19, \lambda5, VpreB, bik kinase, Ig J chain, Vh germine promoters, Ig-k	Central nervous system, B cells	Posterior midbrain abnormal, severe B-lineage developmental arrest, no V-DJ joining
Other Ets family	Ets Winged helix	TCRo, p. y. 5, Bol2, CD2, CD25, TdT; CD3e?, CD4, CD8o, Lck, per- forin, many 8-cell penes	Many detailed expression patterns for different family members. Ets-1 in mature B & T cells	Ets-1 knockout: T, B cells develop but show accelerated cell death, plasma cell differentiation in response to acti- vation.