

Chimiokines et migrations cellulaires

Dr. Isabelle CREMER MCU Université Paris 6

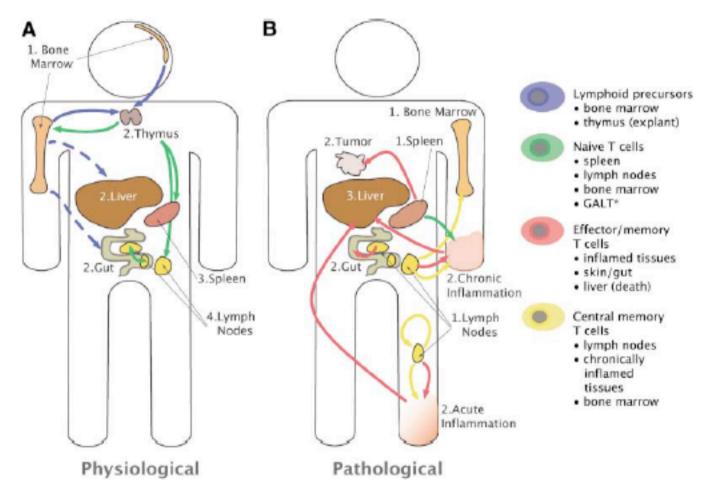
U872 INSERM, équipe 13: Microenvironnement Immunitaire et Tumeurs

Centre de Recherche des Cordeliers. 75006 Paris

Tél: 01 53 10 04 10

E-mail: isabelle.cremer@upmc.fr

Mars 2007

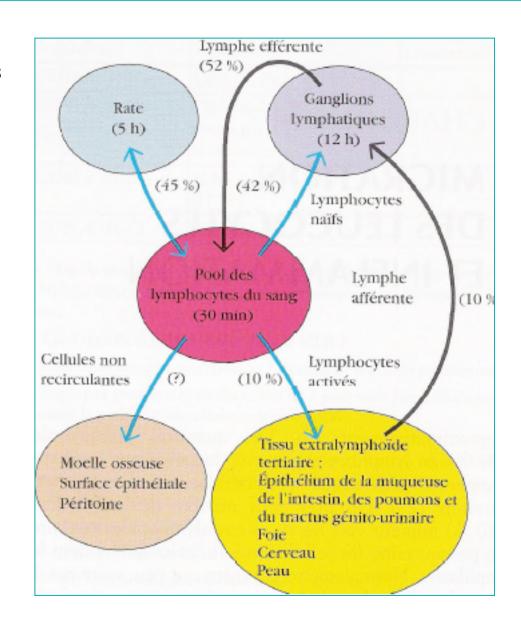

Plan du cours

- Migration des cellules dans l'organisme
- Molécules gouvernant les migrations cellulaires

Molécules d'adhésion/Sphingosine1-phosphate Chimiokines: définition, classification, fonctions

- Techniques de visualisation de la migration des cellules
- Organogénèse et architecture des organes lymphoïdes
- Migrations cellulaires au cours de la réponse immune
- Chimiokines et pathologie
 Inflammation/pathologie infectieuse/auto-immunité/cancers

Migrations des lymphocytes T dans l'organisme



Après activation, les cellules T spécifiques de l'antigène prolifèrent de façon clonale, acquièrent des fonctions effectrices et la capacité de migrer vers les sites inflammatoires. Après élimination de l'antigène, la plupart des effecteurs meurent dans les tissus périf, ou dans les sites centraux comme le foie. Une petite fraction des cellules entre dans le pool des lymphocytes mémoires de longue vie. Cellules mémoires divisées en 2 sous-populations: 1)T mémoire centrale (sont dans les SLO) et 2) T mémoire effecteurs, en circulation

Circulation des lymphocytes T dans l'organisme

Le % du pool de lymphocytes qui circule vers les divers sites et les temps de transit dans les principaux sites sont indiqués.

Les lymphocytes migrent du sang vers les ganglions lymphatiques en passant à travers des zones spécialisées des veinules postcapillaires appelées veinules à endothélium épais (HEV).

Les molécules qui gouvernent les migrations cellulaires

Les molécules d'adhésion

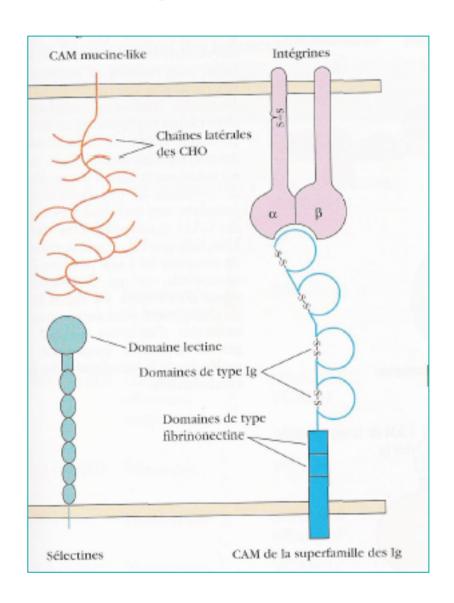
• Les molécules de la famille TNF récepteurs

• Les chimiokines et récepteurs des chimiokines

Les molécules d'adhésion

Rôle important de l'endothélium vasculaire: régulation des migrations des cellules du sang vers les tissus --> extravasation.

Cellules endothéliales expriment des molécules d'adhésion cellulaire (CAM).


Molécules CAM: 4 familles de protéines

- sélectines
- mucine-like
- intégrines
- superfamille des immunoglobulines

Rôle des molécules CAM:

- adhésion des leucocytes aux cellules endothéliales
- interactions fonctionnelles entre cellules du système immunitaire

Structure générale des 4 familles de molécules d'adhésion

Exemples:

CAM mucine-like: Sélectines:

GlyCAM-1 Sélectine-L

CD34 Sélectine-P

MadCAM-1

<u>CAM superfamille des Ig: Intégrines:</u>

ICAM-1,-2,-3 $\alpha 4\beta 1$ (VLA-4)

VCAM-1 α 6 β 1

LFA-2 (CD2)

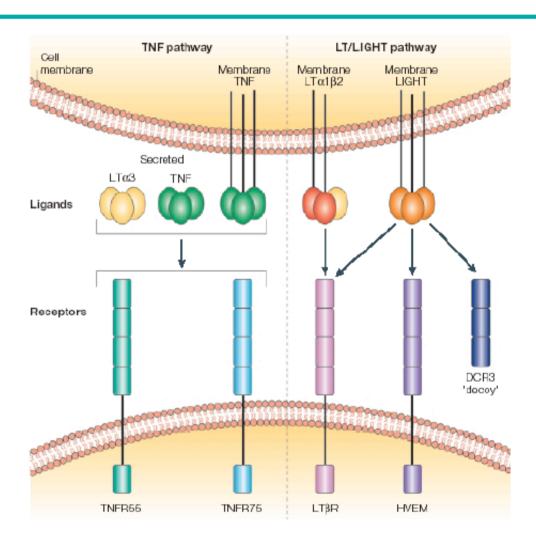
LFA-3 (CD58)

MadCAM-1

Exemples d'interactions entre les molécules d'adhésion

cepteur s cellules	Expression	Ligands de l'endothélium	Étapes impliquant une interaction	Fonction principale
A ou ESL-1	Cellules T effectrices	Sélectine-E	Attachement/roulement	Homing vers la peau et migratior dans le tissu inflammatoire
lectine-L	Tous les leucocytes	GlyCAM-1, CD34, MAdCAM-1	Attachement/roulement	Recirculation des lymphocytes via les HEV vers les ganglions lymphatiques périphériques et migration dans les sites tertiaires d'inflammation
Α-1 (αLβ2)	Sous-groupes de leucocytes	ICAM-1, -2, -3	Adhésion/arrêt	Rôle général dans l'extravasation des lymphocytes viz les HEV et migration des leucocytes dans un tissu inflammatoire
ΑΜ-1 (α4β7)	Cellules T effectrices, monocytes	MAdCAM-1, VCAM-1	Roulement/adhésion	Homing des cellules T vers l'intestin sia les HEV de la muqueuse ; migration dans le tissu inflammatoire
ас-1 (αМβ2)	Monocytes	VCAM-1		Migration des monocytes dans un tissu inflammatoire
GL-1	Neutrophiles	Sélectine-E Sélectine-P	Attachement/roulement	Migration des neutrophiles dans un tissu inflammatoire
.Α-4 (α4β1)	Neutrophiles, cellules T, monocytes	VCAM-1, MAdCAM-1, fibronectine	Roulement/adhésion	Rôle général dans la migration des leucocytes dans un tissu inflammatoire
.Α-6 (α6β1)	Cellules T	Laminine	calabe celluly a lacan	Homing des cellules T progénitri ces du thymus ; rôle possible dans le homing des cellules T vers les sites autres que les muqueuses

a plupart des CAM des endothéliums et des leucocytes appartiennent à quatre groupes de protéines, comme il est montré dans la figure 15.2. En séral, les molécules de la famille des intégrines se lient aux CAM de la superfamille des Ig, et les molécules de la famille des sélectines se lient : CAM mucine-like. Des membres des familles des sélectines et des mucines-like peuvent être exprimés sur les leucocytes et les cellules lothéliales, tandis que les intégrines ne sont exprimées que sur selections.


oir les figures 15-3a et 15-7 pour une illustration des étanes du processus d'extravasation.

D'après Kuby J. Immunologie 2000

Molécules de la famille TNF/TNF récepteur

2 voies majoritaires:

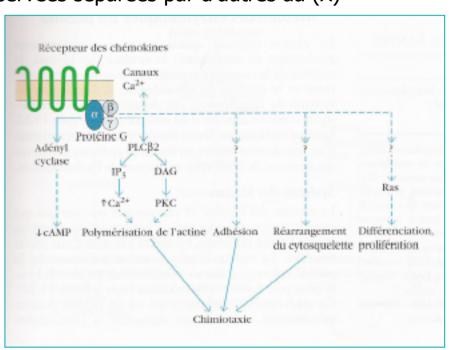
- TNF
- Lymphotoxine/Light

Implication des molécules de la famille TNF/TNF récepteur dans l'organogénèse des organes lymphoïdes

	récepteur	Phénotype associé avec la mutation	
TNFRI	TNFRSF1A	Ganglions présents/absence de formation des centres germinatifs (GC) et des plaques de Peyer (PP)	
LTβR	TNFRSF3	Absence de ganglions et PP/absence de formation des GC	
RANK	TNFRSF11A	Absence de ganglions/PP présentes	
LTα	TNFRSF1	Absence de ganglions et PP/microarchitecture de la rate désorganisée/absence de formation des CG	
TNF	TNFRSF2	Ganglions présents/absence de formation des CG	
LTβ	TNFRSF3	Absence de ganglions périphériques et PP/présence de ganglions mésentériques et cervicaux/absence de formation des CG	
RANKL	TNFRSF11	Absence de ganglions/PP présentes	

Les chimiokines et récepteurs de chimiokines

Fonction:


- superfamille de petits polypeptides (90-130 aa)
- contrôlent de l'adhésion et du chimiotactisme des cellules
- impliquées dans la régulation de la migration des cellules du système immunitaire

Structure:

- possèdent 4 résidus cystéine conservés
- classées en 2 sous-groupes sur la base de la position de 2 des 4 résidus cystéines: Sous-groupe C-C: cystéines conservées sont contiguës Sous-groupe C-X-C: cystéines conservées séparées par d'autres aa (X)

Récepteurs:

- 7 domaines transmembranaires
- couplés aux protéines G

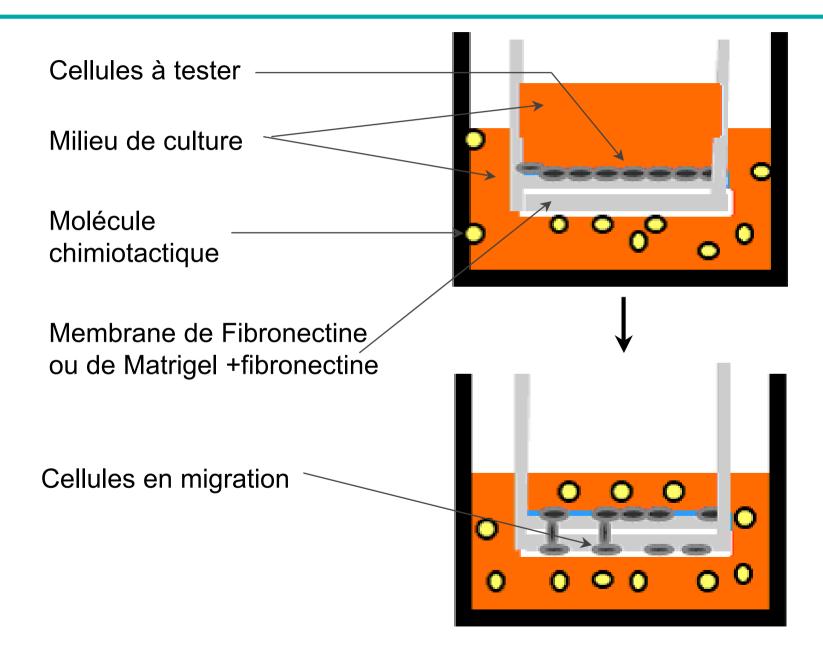
Les récepteurs des chimiokines et leurs ligands

	CC chemokines
CCR1	CCL3 (MIP1α), CCL5 (RANTES), CCL7 (MCP3), CCL8 (MCP2), mCCL9 (MRP2), hCCL13 (MCP4), CCL14 (HCC1), hCCL15 (HCC2), CCL16 (HCC4), hCCL23 (MPIF1)
CCR2	CCL2 (MCP1), CCL7 (MCP3), CCL8 (MCP2), mCCL12 (MCP5), hCCL13 (MCP4), CCL16 (HCC4)
CCR3	CCL5 (RANTES), CCL7 (MCP3), CCL8 (MCP2), CCL11 (eotaxin), hCCL13 (MCP4), hCCL15 (HCC2), hCCL24 (eotaxin-2), hCCL26 (eotaxin-3), CCL28 (MEC)
CCR4	CCL17 (TARC), CCL22 (MDC)
CCR5	CCL3 (MIP1α), CCL4 (MIP1β), CCL5 (RANTES), CCL8 (MCP2), CCL11 (eotaxin), CCL14 (HCC1), CCL16 (HCC4)
CCR6	CCL20 (MIP3α, LARC)
CCR7	CCL19 (ELC, MIP3β), CCL21 (SLC, 6Ckine)
CCR8	CCL1 (B09, TCA3)
CCR9	CCL25 (TECK)
CCR10	CCL27 (CTACK), CCL28 (MEC)

	CXC chemokines
hCXCR1	CXCL6 (GCP2), CXCL8 (IL-8)
CXCR2	CXCL1 (Groα), CXCL2 (Groβ), CXCL3 (Groγ), CXCL5 (ENA78), CXCL6 (GCP2), CXCL7 (NAP2), CXCL8 (IL-8)
CXCR3	CXCL9 (MIG), CXCL10 (IP10), CXCL11 (ITAC)
CXCR3b	CXCL4 (PF4), CXCL9 (MIG), CXCL10 (IP10), CXCL11 (ITAC)
CXCR4	CXCL12 (SDF-1)
CXCR5	CXCL13 (BLC, BCA1)
CXCR6	CXCL16-transmembrane chemokine
	C chemokines
XCR1	XCL1 (Lymphotactin), hXCL2 (SCM1b)
	CX3C chemokine
CX3CR1	CX3CL1 (Fractalkine)-transmembrane chemokine

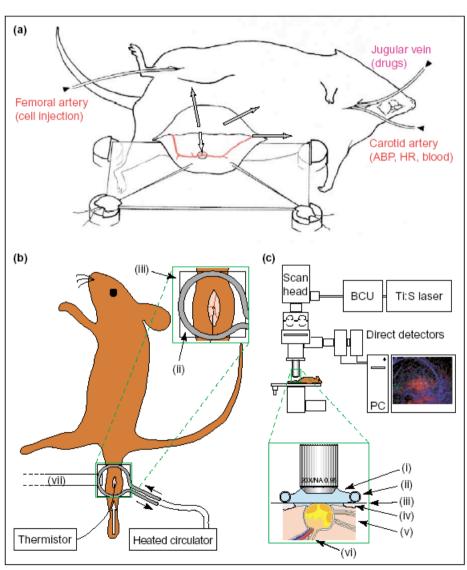
Classification fonctionnelle des chimiokines

Table I. Human chemokines and chemokine receptors in lymphocyte traffic: a functional classification into inflammatory (pale green) and homeostatic (dark green) chemokines. Chemokines belonging to both subfamilies are shown in white.

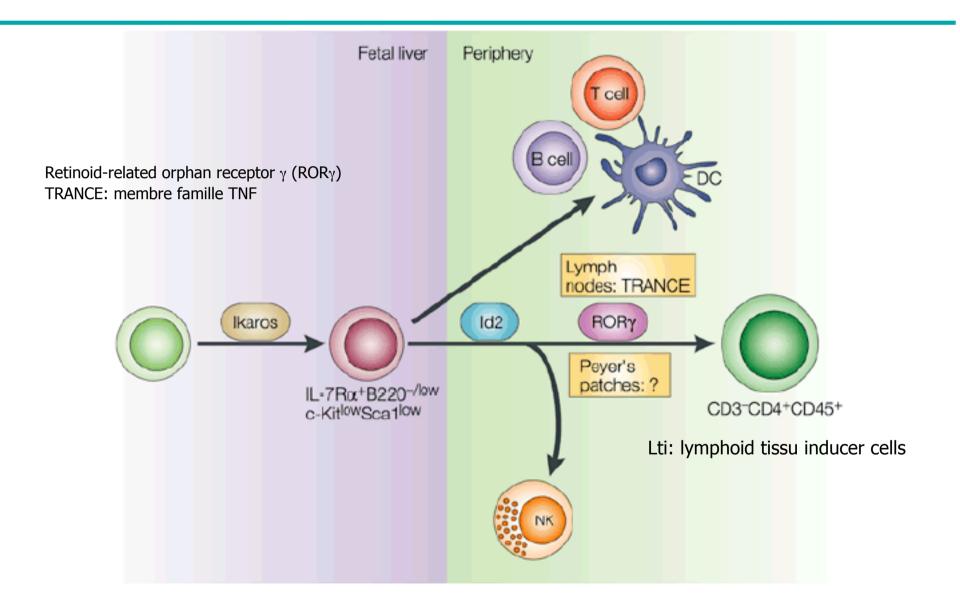

	Chemokines	Receptors	Functions
Inflammatory	I-TAC, MIG, IP10 CXCL16 RANTES, MIP-1α, MCP-2, MCP-3 MCP-1, MCP-2, MCP-3, MCP-4 Eotaxin-1, Eotaxin-2, Eotaxin-3, RANTES, MCP-2, MCP-3, MCP-4, MEC RANTES, MIP-1α, MIP-1β, MCP-2 I309 Fractalkine	CXCR3 CXCR6 CCR1 CCR2 CCR3 CCR5 CCR8 CX3CR1	Effector T cells ^a Effector T cells Effector T cells Effector T cells Effector T cells (T _H 2) Effector T cells (T _H 1) Effector T cells (T _H 2) Effector T cells (T _H 2)
	MDC, TARC LARC	CCR4	Effector T cells (T _H I, T _H 2), memory T cells ^b (CLA), transitional thymocytes Effector T cells, B cells, memory T cells (CLA, α ₄ β ₇)
U	CTACK, MEC SDF-I	CCR10 CXCR4	Memory T cells (CLA) Naïve, memory T cells, B cells, thymocytes
ostati	BCA-I SLC, ELC	CXCR5 CCR7	Follicular B helper T cells (T _{FH}), B cells Naïve, central memory T cells
Homeostatic	TECK	CCR9	(T _{CM}), B cells, mature medullary thymocytes Memory T cells (α ₄ β ₇), B cells, immature thymocytes
	DC-CK1	Unknown	Naïve T cells

Techniques de visualisation de la migration cellulaire

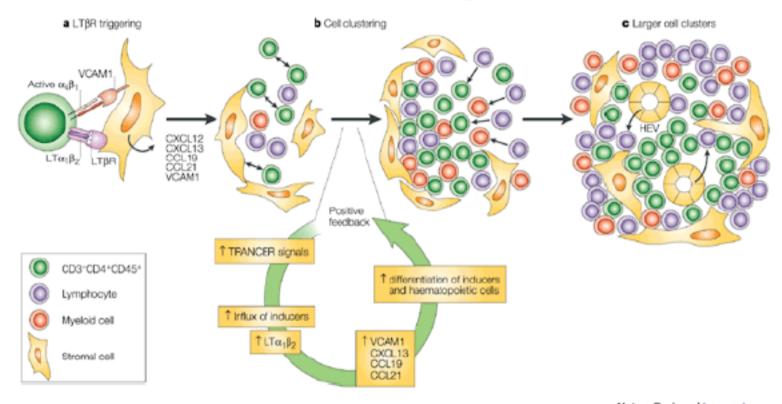
- In vitro: Migrations cellulaire en « transwell »
- In vivo: Marquage des cellules en périphérie


Microscopie intravitale

Migration en transwell



Microscopie intravitale (IVM (IntraVital Microscopy)


Etude de la migration des cellules dans un ganglion

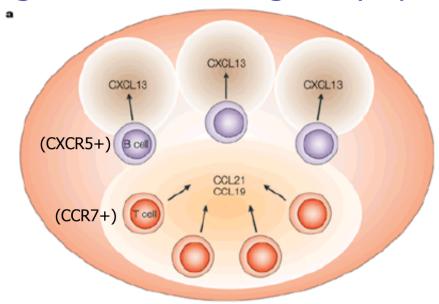
Organogénèse: génération des cellules CD3-CD4+CD45+

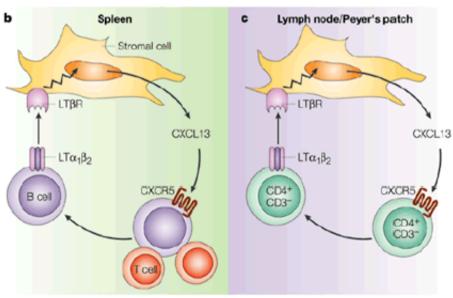
Modèle de développement d'un organe lymphoïde

Nature Reviews | Immunology

Cellules CD3-CD4+CD45+ (exprimant LT α 1 β 2) interagissent avec des cellules stromales (VCAM1)+via l'intégrine α 4 β 1. Les cellules stromales expriment aussi LT β R, et l'interaction avec les cellules CD3-CD4+CD45+ induit une signalisation par LT β R --> production de chimiokines CCL19, CCL21, CXCL12 et CXCL13 (impliquée dans organogénèse tissu lymphoïde) et up-régulation de VCAM1.

Accumulation de cellules hématopoïétiques et de cellules stromales. Production de TRANCE, qui induit différenciation des CD3-CD4- en CD3-CD4+.

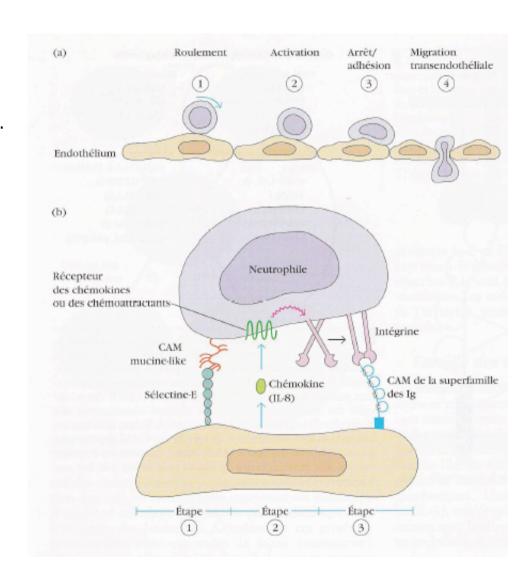

Des vaisseaux sanguins commencent à se différencier en HEV.


Rôle des chimiokines dans l'organisation d'un organe lymphoïde

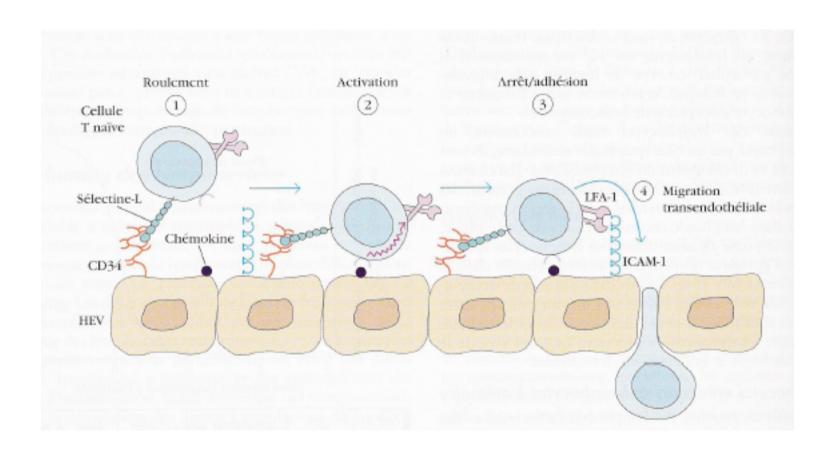
a. Chez la souris adulte, la migration homéostatique des lymphocytes est régulée par CXCL13 (follicules) et CCL19/CCL21 (zones T).

b. Pour la formation des follicules B spléniques, la signalisation par CXCR5 induit une up-régulation de $LT\alpha1\beta2$ par les LB.

c. Pendant le développement des ganglions et des PP, les cellules CD4+CD3- sont indispensables.

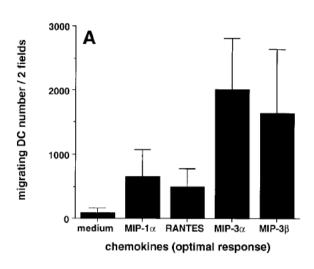


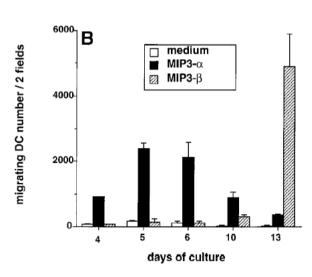
Nature Reviews | Immunology (Mebius R. E. et al. 2003)

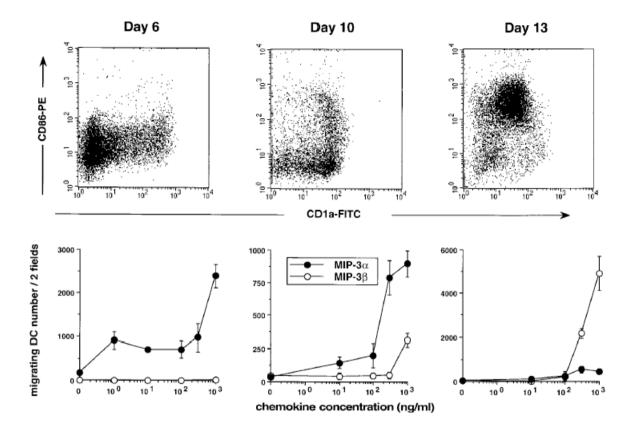

Migrations cellulaires pendant la réponse immunitaire

Extravasation des neutrophiles

- -Roulement initial médié par la liaison des molécules de sélectine E de l'endothélium vasculaire aux carbohydrates des CAM mucine-like.
- -IL-8 se fixe sur son récepteur --> signal d'activation --> changement conformationnel des molécules d'intégrine, leur permet d'adhérer aux CAM de la superfamille des Ig.

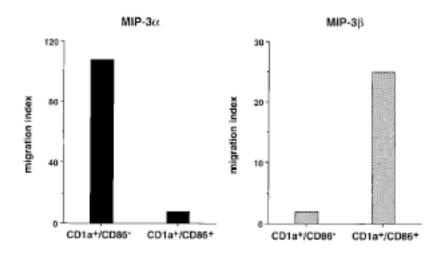


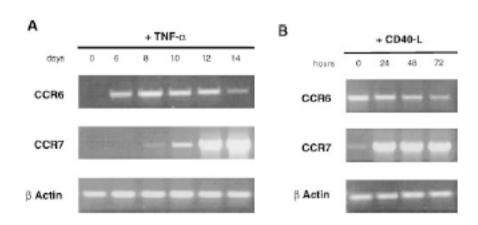

Extravasation des cellules T naïves à travers une HEV



Etude de la migration des cellules dendritiques in vitro

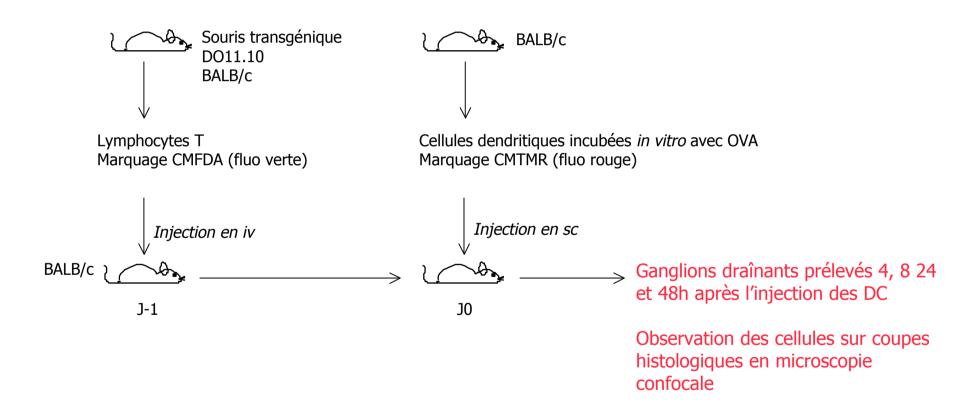
- DC générées à partir de précurseurs CD34+ (culture 10 jours avec GM-SCF et TNF- α)
- (A) Migration en transwell des DC en réponse à différentes chimiokines
- (B) Migration en réponse à MIP-3 α (CCL20) ou MIP-3 β (CCL19) au cours du temps

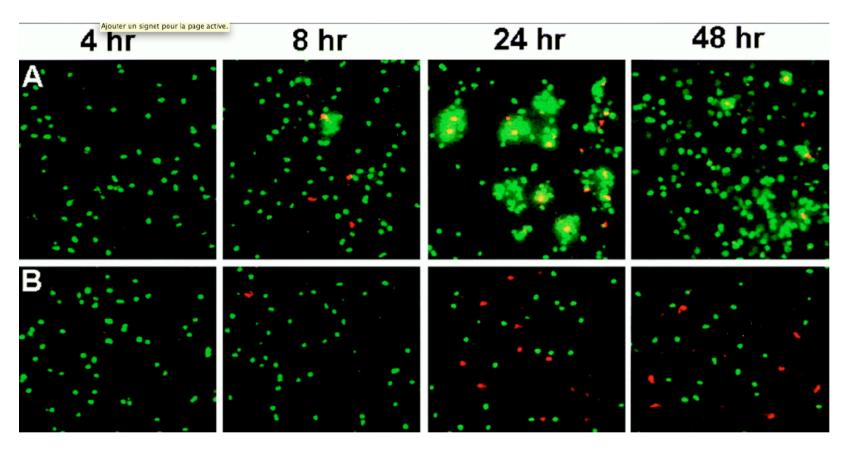


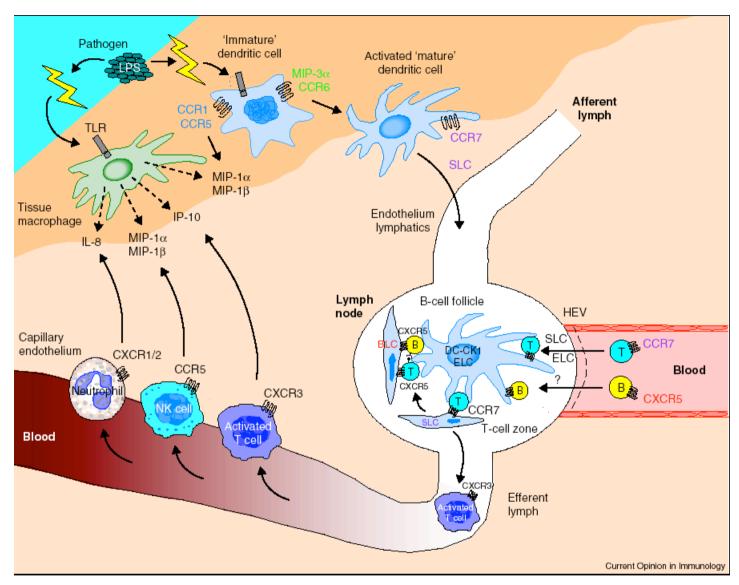

- (A) Expression de CD86 et CD1a par les DC après 6, 10 et 13 jours de culture
- (B) Migration des DC aux mêmes temps

Après 10 jours de culture, les DC ont été triées (FACS) en CD1a+CD86+ (DC matures) et CD1a+CD86- (DC immatures)

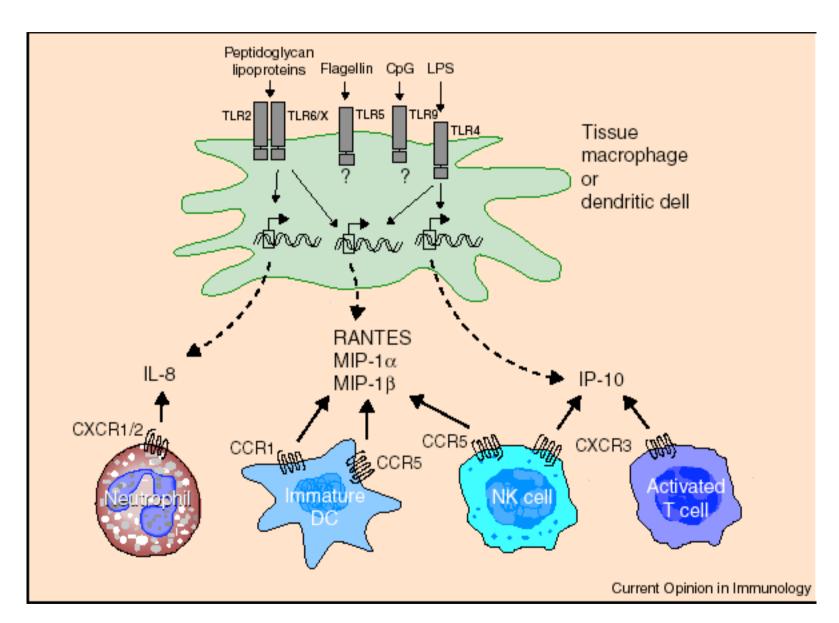
La migration des DC matures et immatures a été analysée

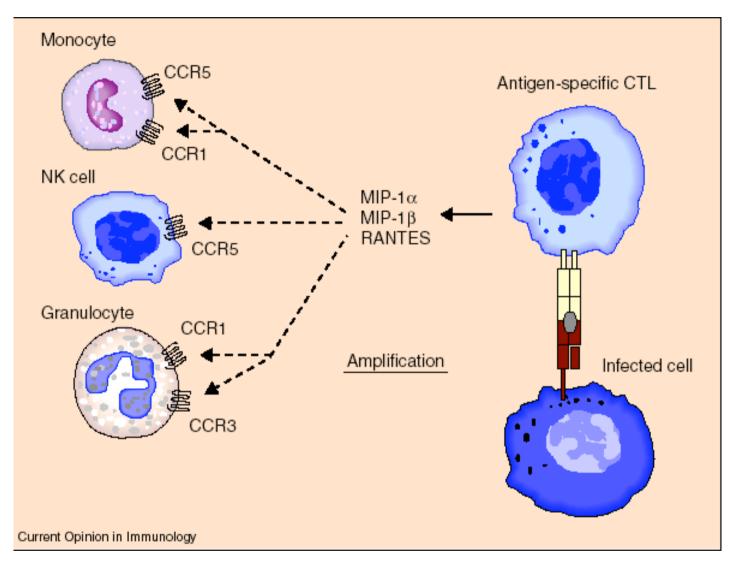



Expression de CCR6 et de CCR7 (RT-PCR) par les DC cultivées en présence de TNF- α ou de CD40-ligand


Etude de la migration des cellules dendritiques in vivo

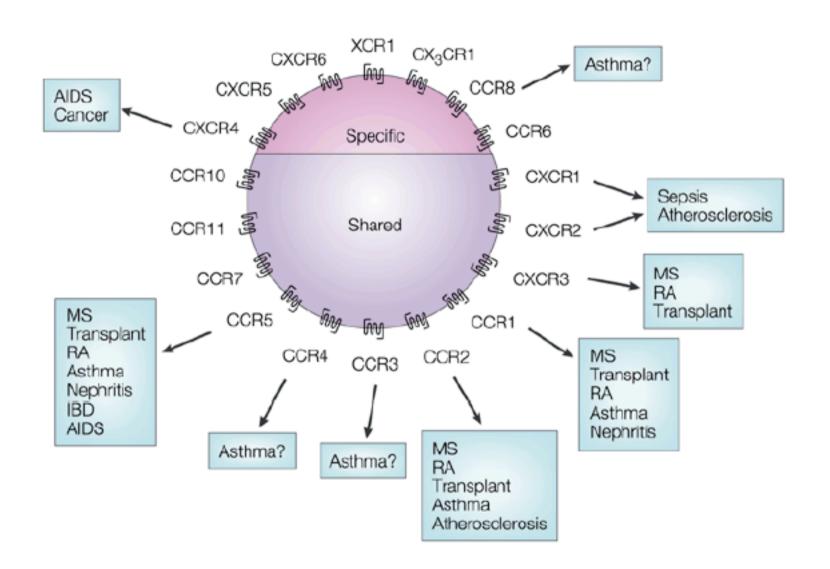
Modèle expérimental:




- (A) DC incubées avec OVA
- (B) DC sans OVA

Rôle des CK dans la migration des DC, des lymphocytes T et des lymphocytes B

L'activation des TLR induit la production de chimiokines



Les chimiokines produites par les T CD8+ activées amplifient la réponse en recrutant d'autres cellules effectrices aux sites de réplication virale.

Chimiokines et pathologies

Table 1. Chemokines and disease		
Category	Human diseases	Animal models
Autoimmune disease	Rheumatoid arthritis; systemic lupus erythematosis; MS	Autoimmune arthritis (for example, collagen-induced arthritis); MRL- <i>Fas</i> ^{io} ; experimental allergic encephalitis
Graft rejection	Heart allograft rejection; kidney allograft rejection	Heterotopic heart allografts; sponge allografts
Infection	Acute and chronic bacterial and viral infections (especially HIV and mycobacteria); sepsis	Rodent models using the same or analogous pathogens; cecal ligation and puncture
Inflammation or allergy	Asthma; arthritis; colitis; psoriasis	Antigen sensitization and anatomically specific delivery (for example, inhaled antigen challenge in asthma models)
Neoplasia	Leukocyte recruitment in cancer; angiogenesis	Therapeutic vaccination; in vivo angiogenesis models
Vascular	Atherosclerosis; hypertension; ischemia-reperfusion	Hypercholesterolemic rodents; genetic models of hypertension; ischemia-reperfusion

Rodent models in which chemokines have been shown to play a role can be divided into five general categories as indicated. The human diseases relevant to the rodent models within each category are shown.

Chimiokines et HIV

The β-Chemokine Receptors CCR3 and CCR5 Facilitate Infection by Primary HIV-1 Isolates

Hyeryun Choe,*# Michael Farzan,*# Ying Sun,* Nancy Sullivan,*† Barrett Rollins,∮ Paul D. Ponath,‡ Lijun Wu,‡ Charles R. Mackay,‡ Gregory LaRosa,‡ Walter Newman,‡ Norma Gerard,∥ Craig Gerard,∥ and Joseph Sodroski*† HIV-1 infects T lymphocytes, monocytes/macrophages, dendritic cells and, in the central nervous system, microglia (Gartner et al., 1986; Koenig et al., 1986; Pope et al., 1994; Weissman et al., 1995). All of these cells express the CD4 glycoprotein, which serves as

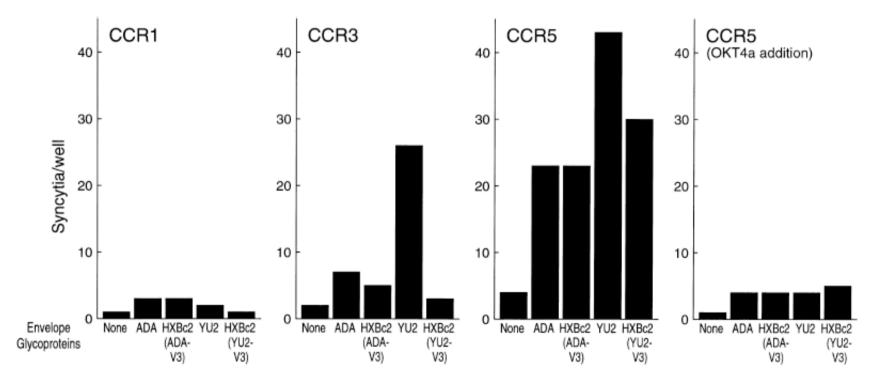
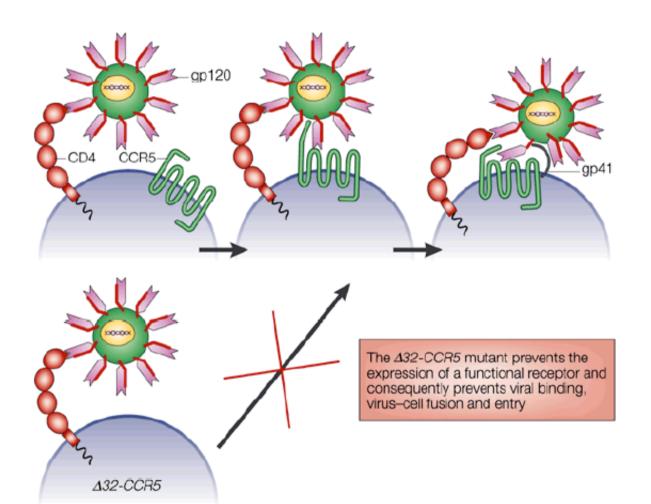



Figure 4. Effect of Chemokine Receptor Expression on HIV-1 Envelope Glycoprotein-Directed Syncytium Formation
HeLa cells expressing either no envelope glycoprotein (None) or the ADA, YU2, HXBc2 (ADA-V3), and HXBc2 (YU2-V3) envelope glycoproteins were cocultivated with HeLa-CD4 expressing CCR1, CCR3, or CCR5. In one set of experiments, 2 μg/ml of the OKT4a antibody (Ortho Pharmaceuticals, Inc.) was added at the beginning of the cocultivation. After 12 hr, the syncytia in the wells were counted. The results of a single experiment are shown. The experiment was repeated with comparable results.

Chimiokines et cancer

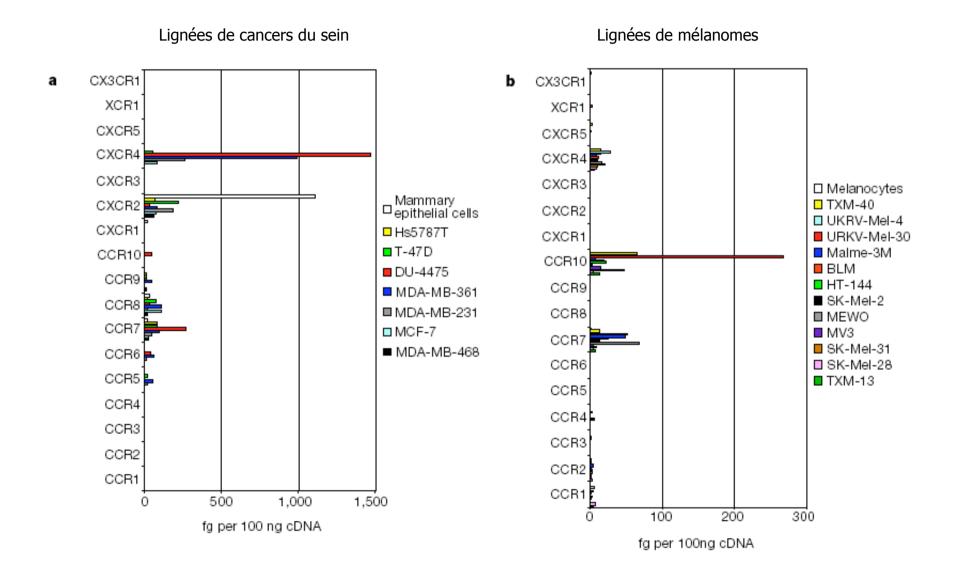
articles

Involvement of chemokine receptors in breast cancer metastasis

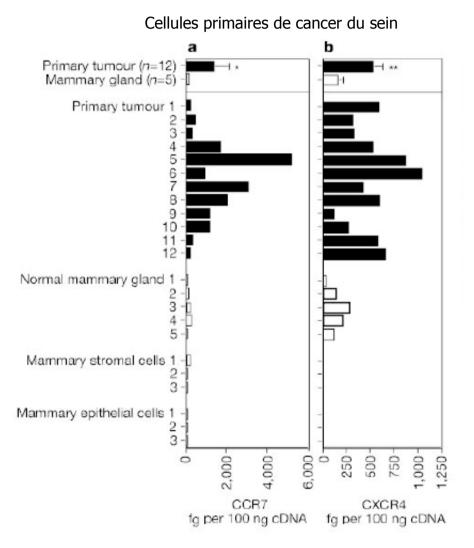
Anja Müller*†‡, Bernhard Homey*†‡, Hortensia Soto*, Nianfeng Ge*, Daniel Catron*, Matthew E. Buchanan*, Terri McClanahan*, Erin Murphy*, Wei Yuan*, Stephan N. Wagner§, Jose Luis Barrerall, Alejandro Moharll¶, Emma Verásteguill & Albert Zlotnik*

^{*} Department of Immunology, DNAX Research Institute, 901 California Avenue, Palo Alto, California 94304, USA

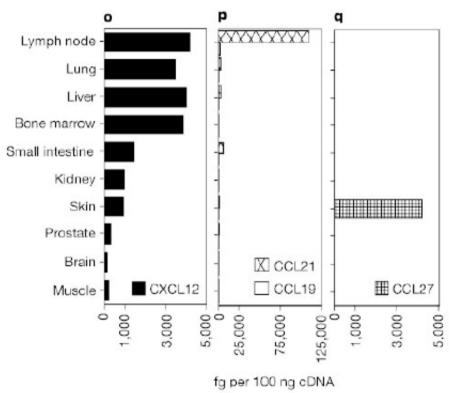
[†] Departments of Radiation Oncology and Dermatology, Heinrich-Heine University, Moorenstrasse 5, D-40225 Düsseldorf, Germany


[§] Department of Dermatology, University of Essen, Hufelandstrasse 55, D-45147 Essen, Germany

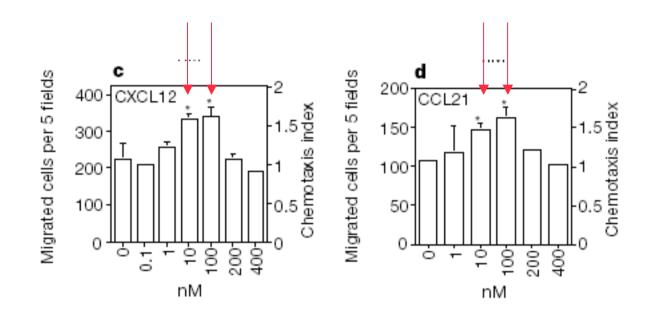
ll Instituto Nacional de Cancerología, Av. San Fernando 22, Tlalpan 14000 D.F., México


[¶] Instituto de Investigaciones Biomédicas, Ciudad Universitaria, 04510 D.F., México

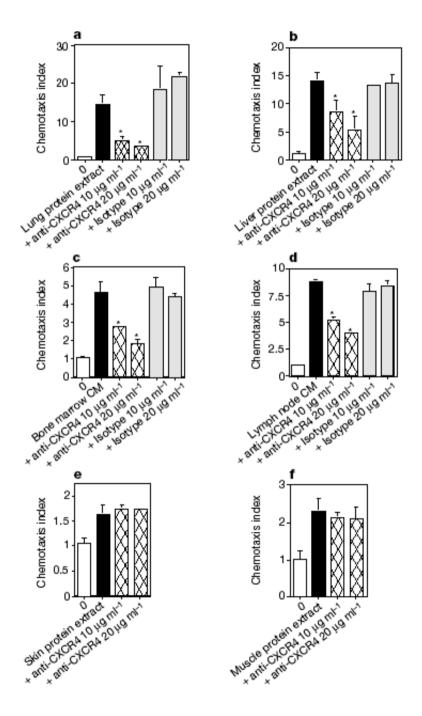
[‡] These authors contributed equally to this work


Expression des récepteurs de chimiokines par les cellules tumorales (RT-PCR)

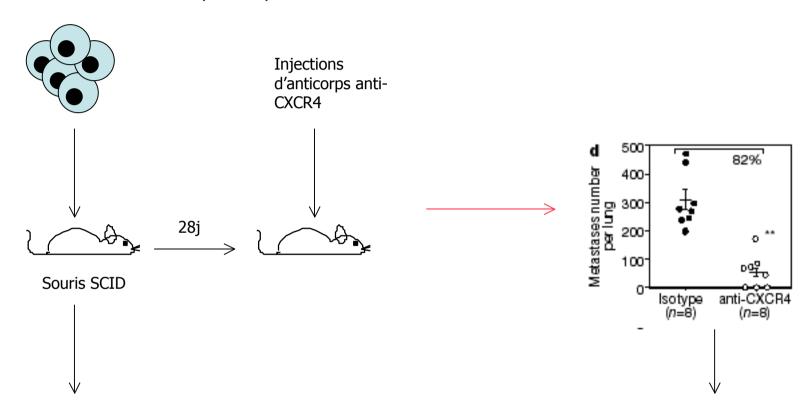
Expression de CCR7 et de CXCR4 par les cellules tumorales



Expression des chimiokines par différents organes

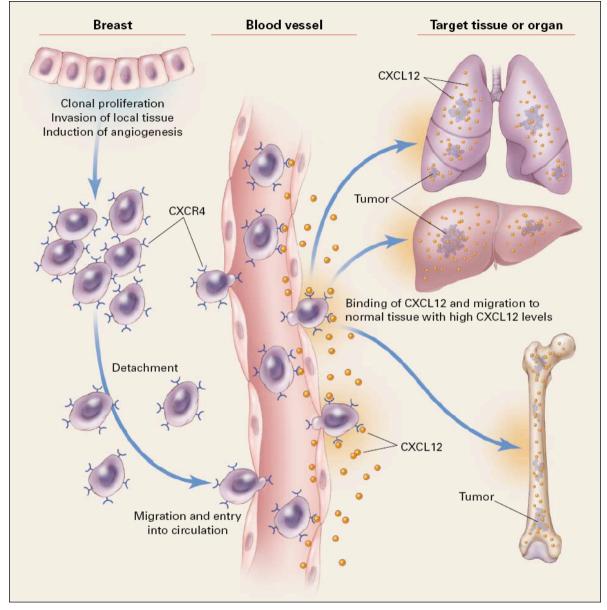

CCR7 <--> CCL21 (6Ckine) CXCR4 <--> CXCL12 (SDF-1)

Migration des cellules tumorales en réponse à CXCL12 (CXCR4) et CCL21 (CCR7)


Migration des cellules de cancer du sein réponse à des protéines dérivées d'organes:

- (a) Poumon
- (b) Foie
- (c) Moelle osseuse
- (d) Ganglions
- (e) Peau
- (f) Muscle

Effet de la neutralisation de CXCR4 in vivo:


Cellules de cancer du sein (CXCR4+)

Souris développent des métastases pulmonaires

Réduction du nombre de métastases

Conclusions:

Cancer du sein: présence de métastases dans les ganglions drainants, moelle osseuse, foie et poumons. La migration des cellules tumorales est en partie régulée par les chimiokines: cellules tumorales et cellules des métastases expriment CXCR4 et CCR7.

Les ligands respectifs de CXCR4 et CCR7 (SDF-1 et 6Ckine) sont exprimés dans les organes où ont lieu les métastases. Métastases bloquées *in vivo* par anticorps anti-récepteur.