

# Definition

AΠΟΠΤΟΣΙΣ: from the Greek: « the fall », as for leaves in Autumn, by opposition to necrosis = accidental death.

Synonymous: programmed cell death, cell suicide.



























### **<u>BH1-4</u>**: anti-apoptotic protein

- Bcl-2, Bcl-x<sub>1</sub>, Mcl-1, A1.
- C terminal part in the outer mitochondria membrane
- Interact with pro-apoptotic protein through BH domains.
- Bcl-2<sup>-/-</sup> mice => lymphopenia
- Bcl-xL<sup>-/-</sup> mice => no CNS development, death at day E13











#### Genetic disorders and apoptosis

Mutations in molecules involved in apoptosis pathways => - cancers

- auto-immune diseases

self-sufficiency in growth signalsinsensitivity to growth-inhibitory signals

- apoptosis resistance

· Transfer of malignancy by engulfment:

- auto-miniture diseases
- neurodegenerative disorders

Apoptosis dysregulation would contribute to <u>about a half</u> of all the major medical illness for which adequate therapy or prevention is currently lacking.

Cancer

· Different molecules, at different stages of apoptotic pathway, involved:

P53 => increase Bax, Bid, Puma, Apaf-1, caspase-9

- increase in survivin (lung, colon, pancreas, prostate, breast)

Possible transfer of oncogenes through engulfment of apoptotic bodies

- increase in Bcl-2 (CLL, AML, MM, ALL=translocation)

from cancer cells => propagation of genetic instability.

- p53: half of known cancers have mutations in p53

#### Neurodegenerative diseases

Example: involvement of caspase-9 in Alzeihmer disease

Caspase-9 cleavage of amyeloid precursor protein may induce neuronal death. Activated caspase-9 and caspase-cleaved APP in patient brains, not in control brains.

# Subversion of cell death by viruses

• Many viruses have evolved mechanisms that **repress premature death** in the cells they require for their persistence and/or replication.

| Viral protein                        | Function        |
|--------------------------------------|-----------------|
| Polyomavirus SV40 large<br>protein   |                 |
| Papilloma virus E6                   | P53 suppressors |
| Adenovirus EKB-55K                   |                 |
| HHV8 LANA proteins                   |                 |
| Adenovirus E1B-19K                   |                 |
| African Swine fever virus<br>LMW5-HL | Bcl-2           |
| EBV BHRF-1                           | homologues      |
| HHV8 ORF16                           |                 |
| Baculovirus p35, IAP                 |                 |
| Cowpox CrmA                          | Caspase         |
| Vaccinia SPI-2                       | inhibitors      |
| Herpes virus v-FLIP                  |                 |

 Other viruses have evolved mechanisms that induces premature death of immune cells by inducing death-R on their surface in order to escape the immune response (HIV nef, CMV).

#### Autoimmune diseases

Lack of tolerance Lymphoproliferation

• Due to:

#### Apoptosis and treatments

Therapeutic targets for cell death inhibition: D. Green & G. Kroemer, JCI, 2005, 115:2610.

| Targets                              | Drug principles                       | Indications                                                                                     |
|--------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------|
| p53                                  | Amifostine (Ethyol)<br>Small molecule | Reduction of renal toxicity<br>during chemotherapy, of<br>parotid gland during<br>radiotherapy. |
| Caspases                             | Caspase inhibitors<br>Small molecules | HCV, acute alcoholic<br>hepatitis, RA, acute<br>myocardial infarction                           |
| Death-R and ligands (TNF- $\alpha$ ) | Neutralizing Abs,                     | RA, psoriasis, Crohn<br>disease                                                                 |
| PARP (caspase substrate)             | Small molecules<br>(nicotine amide)   | Ischemia/reperfusion<br>damage                                                                  |

### Apoptosis and treatments

#### Therapeutic targets for cell death induction: D. Green & G. Kroemer, JCI, 2005, 115:2610.

| Targets                                                        | Drug principles                | Indications                                                           |
|----------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------|
| Bcl-2                                                          | Anti-sense<br>oligonucleotides | CLL, MM, NSCLC.                                                       |
| p53                                                            | Adenovirus (Advexin)           | Head and Neck cancer,<br>breast, lung, colorectal,<br>ovarian cancers |
| Death-R and ligands (TNF-a)                                    | Recombinant receptor           | melanoma                                                              |
| Kinase inhibitors (survival<br>signaling)<br>Ex: HER-1 / HER-2 | Small molecules                | NSCLC, ovarian, breast                                                |

## Apoptosis and natural products

• L. Lopez et al, *Cupressus lusitanica* (Cupressaceae) leaf extract induces apoptosis in cancer cells, 2002, J of Ethnopharmacology, 80:115.

• S. Ming Yuen Lee et al, *Paeoniae Radix*, a Chinese herbal extract, inhibit hepatoma cells growth by inducing apoptosis in a p53 independent pathway, 2002, Life Sciences, 71:2267.

• Sheng-Teng Huang et al, *Phyllanthus urinaria* triggers the apoptosis and Bcl-2 downregulation in Lewis lung carcinoma cells, 2003, Life Sciences, 72:1705.

• Ju-Hyund Woo et al, Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-x<sub>L</sub> and IAP, the release of cytochrome c and inhibition of Akt., 2003, Carcinogenesis, 24:1199.